Evaluating the bias of South China Sea summer monsoon precipitation associated with fast physical processes using climate model hindcast approach

Wei-Ting Chen

Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Collaborators: Chien-Ming Wu, Hsi-Yen Ma (LLNL, USA), Wei-Ming Tsai (now at U Miami, USA), and Peng-Jen Chen

[Chen et al., 2019, J Clim] [Chen et al., 2019, JMSJ, in revision]
Motivation:

Bias of East Asian Summer Monsoon in NCAR CAM5 AMIP simulation

- weaker intensity
- earlier onset (by 4-6 pentads)
- longer duration (by 5-10 pentads)

[Chen et al., 2019, JC]
The challenges of improving monsoon simulations in global models

- In AMIP/CMIP simulations, monsoon bias can be amplified/damped by interactions among various components in the climate system, emerging at multiple time scales (days~decadal)

<table>
<thead>
<tr>
<th>Land-ocean thermal contrast</th>
<th>Large-scale circulation</th>
<th>Climate variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e.g., Zhou & Zou, 2010)</td>
<td>(e.g., Bollasina & Nigam, 2009; Gadgil & Sajani, 1998; Sperber & Palmer, 1996)</td>
<td>(e.g., Lin et al., 2008; Li et al., 2015; Song & Zhou, 2014; Zhou et al., 2009)</td>
</tr>
<tr>
<td>SST and air-sea coupling</td>
<td>Moist convection</td>
<td>Orography</td>
</tr>
<tr>
<td>(e.g., Bollasina & Nigam, 2009; Levine et al., 2013; Levine & Turner, 2012; Marathayil et al., 2013; DeMott et al., 2011)</td>
<td>(e.g., Bush et al., 2015; Mukhopadhyay et al., 2009; Rajendran et al., 2002; Slingo et al., 1994)</td>
<td>(e.g., Boos & Hurley, 2012; Wu, Chou, et al., 2017; Wu, Freychet, et al., 2017; Wu & Hsu, 2016)</td>
</tr>
<tr>
<td>Land surface flux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g., Samson 2016; Terry et al., 2017)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What we often do to reduce bias: Tuning the parameterizations (and hope it works....)

Can we diagnose the biases arisen from the “fast” physics (convection, cloud, radiation), before they interact with the “slow” process (circulation, etc.)?
Identifying model biases caused by fast processes: The Multi-Year Hindcast Procedure

• To diagnose biases associated with interactions of only the fast physics (< 3 days), given a well-constrained, actual large-scale state

• To establish robust model systematic biases by comparing to long-term observations

[Ma et al., 2013; 2015, JAMES] (a.k.a TransposAMIP)
The Cloud-Associated Parameterizations Testbed (CAPT) Hindcast Experiment Design

• 3-day long hindcast simulations starting every day at 00Z for the period of 1998 – 2012

• CAM5.1/CLM4.0 (~ 1 x 1 degree and 30 vert. levels)

• Atmospheric initial state variables: mainly ERA-Interim and also from a nudging run

• Land initial conditions: offline land simulation forced with atmospheric reanalysis and observations

[Ma et al., 2015, JAMES]
Evolution of SCS-EA Summer Monsoon

The CAPT multi-year hindcast:

- Well-constrained winds
- Similar precipitation bias as in AMIP but closer to observation
- Earlier onset in SCS
- Weaker post-onset rainfall

[Chen et al., 2019, JC]
Evaluation of model biases using SCS Monsoon Onset Composites

• SCS summer monsoon onset index:
 - \(U_{scs} \) (averaged over 5-15N, 110-120E) [Wang et al. 2004 JCLI]
 - In the onset pentad \(U_{scs} > 0 \) m/s
 - In the subsequent four pentads, \(U_{scs} > 0 \) in at least three pentads and mean \(U_{scs} \) of the accumulative four pentads > 1 m/s

• Calculate \(U_{scs} \) from ERA-I to determine the monsoon onset date each year between 1998 and 2012:
 - Pre (post) -onset composites: two pentads before (after) onset date
Pre-onset Bias: Land-ocean contrast of precipitation and local circulation

- Much weaker land-ocean contrast in hindcast
- Anomalous subsidence over ocean associated with strong land convection (diurnal cycle) is weaker

Conditional sampling for days with subsidence over open ocean in ERA-I

[Chen et al., 2019, JC]
Bias in Diurnal Cycle of Convection over Land

- Weaker amplitude, earlier peak time
- Longer duration but weaker rainfall
- Land DC biases are similar both pre- and post-onset

Pre-onset, TRMM

Pre-onset CAPT Day3
Post-onset Bias: Costal organized convection system

• Rainfall over W Philippines weaker and less concentrated (smaller E-W gradient)
• Less organized costal convection system, with strong upper level heating (stabilizing effects)

Exclude year 2006 due to TC

[Chen et al., 2019, JC]
Observed Occurrence of Precipitation Objects by Size

S (<100 km) M (100-300 km) L (>300 km)

Pre-onset:
- Mostly over land (S- and M-size)

Post-onset:
- Over ocean mainly L-size
- Over land mainly M-size

[Chen et al., 2019, JMSJ, in revision]
Insufficient Sensitivity of Precipitation to Column RH

- Similar bias in CRH-precip during pre- and post-onset
- Rainfall variability is overestimated in dry environment (<75%), and underestimated in moist environment (>75%)
Idealized Cloud-Resolving Simulations over Coastal Areas

- 3D cloud-resolving **Vector Vorticity Model (VVM)** with interactive land surface model
 [Jung and Arakawa 2008; Wu and Arakawa, 2011; Chien and Wu, 2016; Lin, 2016]
- **Idealized** ocean-land-orography configuration similar to the actual scale of the SCS basin
- 10-day simulations with solar forcing to generate diurnal cycle; dx=2km; 45 layers stretched to 30km
- **Sensitivity to background vertical wind shear:** No shear vs. Shear (weak low-level westerly)
Idealized VVM Cloud-Resolving simulations:

Response of Coastal Convection to Low-level Wind Shear

[Chen et al., 2019, JMSJ, in revision]
Zonal Vertical Profile of Q_v and Cloud Fraction

Ocean Mean Subsidence Profile

Coastal Convection, Basin-scale Circulation, and Ocean CWV

Evolution of Ocean Mean CWV

[Chen et al., 2019, JMSJ, in revision]
Similar bias may exist over other coastal monsoon regions

- Pre-monsoon environment with very warm SST (>28°C) suppressed by prominent low-level subsidence

- Monsoon intensity = annual range of precip/annual mean precip
Conclusions

• SCSSM precipitation in NCAR CAM5 is evaluated using the CAPT hindcast framework to identify biases due to interactions of fast physical processes
 • Pre-onset: too weak land-ocean convection contrast and the associated local circulation
 • Post-onset: organized coastal convection is not well represented
 • Biases in diurnal cycle and sensitivity to moisture of cu parameterization

• The influence of land convection on basin-scale circulation, and the effect of coastal convection on the ocean moistening
 → representation of coastal convection in GCMs may be the key for simulating a more realistic monsoon onset transition.

• Ongoing work:
 • Sensitivity tests of cu parameterization under the hindcast framework
 • Idealized CRM simulations to explore the sensitivity of moistening time-scale to SST, wind shear intensity (altitude), and land surface type and terrain.
Thank you for listening!

weitingc@ntu.edu.tw

Funding Source: Ministry of Science and Technology, Taiwan

NCAR CAM5 Asian Monsoon (AMIP simulation)

- Onset and Duration based on fractional accumulation of rainfall
- EASM in CAM5 AMIP: “too early, too weak”

Monsoon onset: Pentad at FA = 0.2

Monsoon duration: Pentads from FA=0.2 to FA= 0.8

Based on Sperber and Annamalai [2014 CD]
Bias in Asian Monsoon Intensity: CAM5 AMIP vs. CAPT

- CAPT: “Dipole patterns” with suppressed (enhanced) seasonal contrast over the windward (leeward) side of SCS, BoB, and India
Pre-onset: Land-ocean contrast of precipitation, moisture, and local circulation

- Much weaker land-ocean contrast in hindcast
- Anomalous subsidence over ocean associated with strong land convection (diurnal cycle) is weaker

Precipitation

- **TRMM, ERA-I**
- **CAPT DAY3**

Column RH

- **CAPT Day 3 Q1-QR & w**

TRMM Q1-QR & ERA-I w

- Conditional sampling for days with subsidence over open ocean in ERA-I
Pre-onset daily mean precipitation over Philippine land vs. over SCS ocean, only for the days when SCS ocean areas exhibit low-level subsidence:

Observation: strong land precip – low/no ocean precip

CAPT: strong land precip – strong ocean precip
Post-onset: Costal organized convection system

- Rainfall over the W Philippines weaker and less concentrated in hindcast (smaller E-W gradient)
- Less organized costal convection system; with strong upper level heating (stabilizing effects)

Excluding year 2006 due to TC
Diurnal cycle of convection over land is under-simulated

Land DC biases are similar pre- and post-onset
- Weaker amplitude
- Earlier peak time
- Longer duration but weaker rainfall

Bias in post-onset coastal system DC
- No E-W contrast
Quantify the size of precipitating objects in TRMM 3B42

- Identify object-based precipitating systems (OPS) by contiguous TRMM 3B42 pixels with precip. > 1 mm/hr using the four-way connection segmentation method [Tsai and Wu, 2016]

- Horizontal size scale = $\sqrt{\text{Area of precipitating object}}$

S (<100km), M (100-300km) and L (>300km)
10-day evolution of OLR, **no vertical wind shear imposed**
10-day evolution of OLR, with vertical shear (low-level westerly)

(blue=high cloud top)