Exploring uncertainty in model representation of atmospheric convection through

Universal Structural Parameterisation

Hugo Lambert, with thanks to
Peter Challenor, Neil Lewis, Ian Boutle, Nathan Owen,
Richard Keane, Mark Webb, Doug McNeall,
Hannah Christensen and Nathan Mayne

University of Exeter, UK Met Office and University of Oxford
What I want

1. Parameterisations written as functions of the same resolved variables.
1 Parameterisations written as functions of the same resolved variables.

2 A diagram on which I can:
 - say “your parameterisation does this... my parameterisation does this... the real world does this...”
 - do the same with process-based models.
 - create new, plausible parameterisations that don't exist yet.
What I want

1. Parameterisations written as functions of the same resolved variables.

2. A diagram on which I can:
 - say “your parameterisation does this... my parameterisation does this... the real world does this...”
 - do the same with process-based models.
 - create new, plausible parameterisations that don’t exist yet.

3. To test the importance of a given parameterisation for climate change prediction uncertainty.
What I want

1. Parameterisations written as functions of the same resolved variables.

2. A diagram on which I can:
 - say “your parameterisation does this... my parameterisation does this... the real world does this...”
 - do the same with process-based models.
 - create new, plausible parameterisations that don’t exist yet.

3. To test the importance of a given parameterisation for climate change prediction uncertainty.

4. *Run* the representations in **FORTRAN 90**.
Some statistical / machine learning frameworks

- Linear regression
- Genetic algorithm
- Gaussian Process
- Neural network
Some previous work with ML frameworks

Krasnopolsky (2010): Neural network for radiation trained on parameterisation. (Work goes back 25 years...)

O’Gorman and Dwyer (2018): Random forest for convection trained on parameterisation.

Rasp et al. (2018): Neural network of radiation and convection trained on cloud resolving simulation.
Statistical method (1)

- Write data inputted into and outputted by a convection scheme in terms of one enthalpy vector per model column.

- Express data in terms of its eigenvectors to aid parsimony and orthogonality.

- Build a regression model that links outputs to inputs.
 - Class-based logistic regression for convective trigger. (Does it convect or not?)
 - Ordinary linear regression model of convecting cases.

- Discard eigenvectors that don’t account for much variance and obtain a human-readable description of one or more convection schemes.
Trigger?

\[
\hat{\text{class}} = \frac{\exp(\sum_i \gamma_i (u_i . \text{input}))}{1 + \exp(\sum_i \gamma_i (u_i . \text{input}))}
\]

IF \(\hat{\text{class}} > 0.5\), THEN convect.

Convection cases:

\[
\hat{\text{output}}_j = \sum_i \beta_{ij} (u_i . \text{input}) v_j,
\]
\[
\hat{\text{output}} = \sum_j \hat{\text{output}}_j.
\]
Experimental set-up

- Met Office UM vn11.1. (Close to HadGEM3-A.)

- Aquaplanet with slab ocean.

- No cloud interaction with radiation. No convective cloud.

- Emulators fitted to 60 days of 30° N–S data from January and July. Somewhat suboptimal.

- Two convection schemes. Met Office simplified Lambert-Lewis scheme (LLCS) and Gregory-Rowntree mass-flux scheme.
What do first modes of response look like?

![Graphs showing LLCS and GR with Q1 and Q2](image-url)
What causes them?

Convection is rare, so investigate $\sum_i \beta_{ij} u_i$.
<table>
<thead>
<tr>
<th></th>
<th>LLCS</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convecting</td>
<td>84 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Non-convecting</td>
<td>82 %</td>
<td>93 %</td>
</tr>
<tr>
<td></td>
<td>LLCS</td>
<td>GR</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Convecting</td>
<td>84 %</td>
<td>90 %</td>
</tr>
<tr>
<td></td>
<td>95574/114297</td>
<td>85776/95438</td>
</tr>
<tr>
<td>Non-convecting</td>
<td>82 %</td>
<td>93 %</td>
</tr>
<tr>
<td></td>
<td>4006957/4862343</td>
<td>2238165/2400206</td>
</tr>
</tbody>
</table>
LLCS mid-upper tropospheric warming

![Graph showing LLCS mid-upper tropospheric warming](image)
GR mid-upper tropospheric warming

![Graph showing the relationship between emulator warming and actual warming in Kelvin. The graph contains a scatter plot with a diagonal line indicating the perfect match. The x-axis represents emulator warming in Kelvin, ranging from -0.1 to 0.7, and the y-axis represents actual warming in Kelvin, ranging from 0 to 0.6. The color bar on the right side indicates the temperature range from -6 to 6 Kelvin.](image-url)
Combined v_1 and $u_{1,2,3}$ for LLCS and GR

First joint output

Pressure [hPa]

- Q1
- Q2

Second joint input

Pressure [hPa]

First joint input

- dry
- moist

Third joint input

Pressure [hPa]
Sensitivity of v_1 to $u_{1,2,3}$
Emulating convection in the GCM...
First CASCADE data prepared by Hannah Christensen

CASCADE mid-upper tropospheric warming

Emulator warming [K]

Actual warming [K]

Convecting: 84%
Non-convecting: 89%
for 9434 cases.
Conclusion

- **Universal structural parameterisation** is a way of writing down model parameterisations using variables on the model grid that are observable in principle.

- **USP** was successful in expressing two convection schemes simply and highlighting differences between them.

- Some **success** in trying to run USP examples within a GCM.

- **Future work:** Analyse high resolution data. Evaluate the extent to which schemes represent our knowledge of convection.
