Convection parameterization in the CNRM climate model: calibration and structural limits

Romain Roehrig, Fleur Couvreux, James Salter, Daniel Williamson

1 CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
Context and motivations

New atmospheric physics in CNRM-CM6-1 (Roehrig et al. 2019):

- Calibration over the past 4-5 years (back and forth with development)
- Calibration “by hand”, one or two parameters at the same time
- Difficulty to calibrate this physics to make it work for both shallow and deep convection (“unified” convection parameterization)

Recent developments (especially along the French High-Tune project):

- Use of statistical tools from the Uncertainty Quantification community
- Help to rigorously explore the sensitivity of a physics/parameterization to its internal parameters, even though simulations can have significant computing time
- Framework to identify which model errors are related to calibration issues and which are structural to the model

The 1D framework:

- Key step in the development process of atmospheric parameterizations
- Step that allows to be really close to physical processes, and during it is easier to understand compensations of errors; use of LES/CRM simulations is often key
- A wide range of cases is now available, with reference simulations.
 - Necessary condition for a parameterization to be validated?

All these provide a rigorous framework to address questions such as:

- In a given model (or environment), and independently of calibration issues, is parameterization A better than parameterization B?
- Can a unified convection parameterization (such as the one used in CNRM-CM6-1) really capture dry, shallow and deep convection?
Context and motivations

ARM-Cumulus : diurnal cycle of continental cumulus

Cloud Fraction

LES (Meso-NH) CNRM-CM6-1

- Overestimate of cloud fraction
- Cloud base too low
- BL not deep enough, mixing too weak
- Intermittency and numerical issues
Context and motivations

Convection during CINDY2011/DYNAMO

Field campaign in OND 2011, documenting energy and moisture budget over two arrays in the Indian Ocean (Johnson and Ciesielski, 2013)

CM6 Potential temperature bias

CM6 Specific humidity bias

Precipitation
Objectives and Framework

Objectives

- Explore the parametric uncertainty of the CNRM-CM6-1 convection parameterization for the ARM-Cumulus et CINDY2011/DYNAMO cases
- Which errors are calibration issues? Which are structural?

Framework: Iterative refocussing

(Williamson et al. 2017, Salter et al. 2018)

- Define target metrics m_i and associated references
- Identify relevant uncertain parameters x and their uncertainty ranges $x \in X$
- Build an experimental design (learning dataset)
- Build emulators $f_i(x)$ for each metrics m_i (Gaussian Processes)
- Identify the subset of X which cannot be ruled out yet (NROY space) knowing (implausibility):
 - Reference uncertainties,
 - Emulator uncertainties,
 - Some tolerance (discrepancy) quantifying how close to the reference we think our model can be.
- Continue with a 2nd, 3rd, ... wave, as long as we need to improve the emulator forecasts (but only where it is needed), until convergence towards the true NROY is approximately achieved
Metrics, parameters and experimental design

- Direct emulation of vertical profiles of temperature and specific humidity (Hour 10 of ARM-Cumulus case)
- Metrics to define the NROY space ~ Euclidean norm
- Reference: LES simulation with Meso-NH, uncertainty from an ensemble of LES simulations

- 13 parameters:
 - 8 related to convective transport (entrainment/detainment, drag, buoyancy parameter)
 - 2 related with convective closure
 - 1 related to convective cloudiness
 - 2 related with liquid water microphysics

- Wave 1: 100 simulations, sampling based on a Latin hypercube
- Next waves: 50 simulations
Wave 1: 100 simulations

Discrepancies (constant along the vertical):
- Potential temperature: 0.5 K
- Specific humidity: 1. g kg\(^{-1}\)
ARM-Cumulus - Specific humidity

Reducing the number of dimensions

- Rather than emulate each level (22), the number of dimensions is reduced using EOFs.
- The first 7 EOFs (explained variance > 95%) would be used.
Reducing the number of dimensions

- Rather than emulate each level (22), the number of dimensions is reduced using EOFs.
- The first 7 EOFs (explained variance > 95%) would be used.
- However, these classic EOFs cannot generally reproduce the reference. Risk of *terminal case*.
 - Rotation (Salter et al. 2018)
Implausibility threshold based on a χ^2 distribution with 7 degrees of freedom (99%).

- After Wave 1, NROY space ~71% of the departure space.
- But the emulator uncertainty dominates the implausibility.
Not Ruled Out Yet Space – Wave 5

• Implausibility threshold based on a χ^2 distribution with 7 degrees of freedom (99%).

• After Wave 1, NROY space ~71% of the departure space.

• But the emulator uncertainty dominates the implausibility

• After Wave 5, NROY space ~23% of the departure space.

• Convergence approximately achieved

• Dominant parameters:
 - Organized entrainment modulation factor (GCVRE)
 - Maximum turbulent entrainment (TENTRX)

• A few others parameters are important
 - Coefficient in convective CAPE closure (REFLCAPE)
 - Transition vertical velocity for turbulent entrainment (VNX)
Combining temperature and specific humidity

• Consistent behaviour for potential temperature.

• High values of entrainment are required (GCVRE and TENTRX)
First drafted calibration?

Potential temperature bias

Specific humidity bias

Min implausibility
Min implausibility all metrics
10 min implausibility all metrics
First drafted calibration?

Potential temperature bias

Specific humidity bias

Predicted by the emulator

True profiles

Min implausibility (each metric)
Min implausibility all metrics
10 min implausibility all metrics

CM6 « Best »

Specific humidity bias

Potential temperature bias

True profiles

Predicted by the emulator
And over the full case?

Cloud Fraction

LES

CM6

« Best »

Updraft area fraction

Updraft vertical velocity

Updraft buoyancy

Hour 10
Focus on the first MJO event, and on the specific humidity profile

Metrics to define the NROY space ~ Euclidean norm

Reference: field campaign observation (radiosounding array), humidity uncertainty ~0.5 g kg\(^{-1}\) (to be improved)
Focus on the first MJO event, and on the specific humidity profile

Metrics to define the NROY space ~ Euclidean norm

Reference: field campaign observation (radiosounding array), humidity uncertainty ~0.5 g kg\(^{-1}\) (to be improved)

Same 12 parameters as before + 3 for ice microphysics

Wave 1: 100 simulations (Latin hypercube) for Wave 1, then 50
• **Implausibility** threshold based on a χ^2 distribution with 4 degrees of freedom (99%).

• After Wave 3, NROY space ~27% of the original space.

• Some further waves required to achieve convergence.

• Similar parameters as for ARM-Cumulus are involved, but with opposite patterns

> Probably hard to find an appropriate tuning for both shallow and deep convection...
Conclusions and perspectives

Conclusions

• *Iterative refocussing* provides a framework to rigorously explore the parametric calibration of a parameterization or a model, and more generally many questions in atmospheric modelling.

• It is possible to achieve a better tuning of the CNRM convective parameterization for some 1D cases.

• However, in its present state, the CNRM convective parameterization does not seem to be able to capture both shallow and deep convective regimes.

A few thoughts

• The 1D framework should be seen as a necessary step to:
 – Reduce the parameter space which is relevant for tests in more complex configurations
 – Identify as early and efficient as possible the structural limits of a given atmospheric physics

• Choice of metrics (or the “eye of the expert”) is crucial to analyse the NROY space, avoid compensations of errors, and further reduce the possibilities.

• A few waves (3 to 10) are often required to reach the point where the emulator uncertainty ≤ reference uncertainty/discrepancy.

• Discrepancy is critical. A priori based on modellers' experience, but methodologies should be develop to help us to better quantify it.

• Need to increase the diversity of 1D cases, to avoid the over-fitting trap. Also connect with more complex configurations (towards 3D).