Existence and stability of elementary heteroclinic networks in \mathbb{R}^4

Alexander Lohse – Department of Mathematics, Hamburg

Joint work with Sofia Castro (University of Porto)

Dynamics Reading Group Exeter - 26th February 2015

Heteroclinic cycles	Cycles	Networks	Stability	A-B-stability
	●00	00	000	000000

Definition 1

Let $\Gamma \subset O(n)$ be a finite group and consider an equivariant ode on \mathbb{R}^n

 $\dot{x} = f(x)$ with $f(\gamma x) = \gamma f(x)$ for all $\gamma \in \Gamma, x \in \mathbb{R}^n$.

A heteroclinic cycle is a collection of finitely many equilibria ξ_j and connecting trajectories $s_j \subset W^u(\xi_j) \cap W^s(\xi_{j+1})$, where $\xi_{m+1} = \xi_1$.

Heteroclinic cycles	Cycles	Networks	Stability	A-B-stability
	•00	00	000	000000

Definition 1

Let $\Gamma \subset O(n)$ be a finite group and consider an equivariant ode on \mathbb{R}^n

$$\dot{x} = f(x)$$
 with $f(\gamma x) = \gamma f(x)$ for all $\gamma \in \Gamma, x \in \mathbb{R}^n$.

A heteroclinic cycle is a collection of finitely many equilibria ξ_j and connecting trajectories $s_j \subset W^u(\xi_j) \cap W^s(\xi_{j+1})$, where $\xi_{m+1} = \xi_1$.

S	i	m	р	le	&	ro	b	ust	t
			L .						

Cyc	les	Networks	Stability	A-B-stability
00		00		

Definition 2 (Krupa&Melbourne [1])

- (1) A heteroclinic cycle is called **robust** if for all *j* there is a subgroup $\Sigma_j \subset \Gamma$ such that ξ_{j+1} is a sink in $P_j := \operatorname{Fix}(\Sigma_j)$ and $W^u(\xi_j) \cap P_j \subset W^s(\xi_{j+1})$.
- (2) A robust cycle in \mathbb{R}^4 is called **simple** if
 - dim $(P_j) = 2$ for all j,
 - it intersects connected components of $(P_{j-1} \cap P_j) \setminus \{0\}$ at most once,
 - the linearisation $df(\xi_j)$ has no double eigenvalues.

S	i	m	р	le	&	ro	b	ust	t
			L .						

Cycles	Networks	Stability	A-B-stability
000			

Definition 2 (Krupa&Melbourne [1])

- (1) A heteroclinic cycle is called **robust** if for all *j* there is a subgroup $\Sigma_j \subset \Gamma$ such that ξ_{j+1} is a sink in $P_j := \operatorname{Fix}(\Sigma_j)$ and $W^u(\xi_j) \cap P_j \subset W^s(\xi_{j+1})$.
- (2) A robust cycle in \mathbb{R}^4 is called **simple** if
 - $\circ \dim(P_j) = 2$ for all j,
 - it intersects connected components of $(P_{j-1} \cap P_j) \setminus \{0\}$ at most once,
 - the linearisation $df(\xi_j)$ has no double eigenvalues.

Transverse eigenvalues ("away from the cycle") $t_j \ge 0$ influence stability.

Types A, B, C in \mathbb{R}^4

Cycles	Networks	Stability	A-B-stability
00●	00	000	000000

Definition 3 (Krupa&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^4$ is of

- **type A** if and only if $\Sigma_j \cong \mathbb{Z}_2$ for all j,
- **type B** if and only if X lies in a 3d fixed-point subspace $Q \subset \mathbb{R}^4$,

• **type C** if and only if it is not of type A or B.

Lemma 4 (Krupa&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^4$ is of type A if and only if there is no element $\gamma \in \Gamma$ that acts as a reflection on \mathbb{R}^4 .

Types A, B, C in \mathbb{R}^4

Cycles	Networks	Stability	<i>A-B-</i> stability
00●	OO	000	000000

Definition 3 (Krupa&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^4$ is of

- **type A** if and only if $\Sigma_j \cong \mathbb{Z}_2$ for all j,
- **type B** if and only if X lies in a 3d fixed-point subspace $Q \subset \mathbb{R}^4$,

• **type C** if and only if it is not of type A or B.

Lemma 4 (Krupa&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^4$ is of type A if and only if there is no element $\gamma \in \Gamma$ that acts as a reflection on \mathbb{R}^4 .

Lemma 5 (Krupa&Melbourne [1])

There are seven simple heteroclinic cycles of types B and C in \mathbb{R}^4 and the only finite groups $\Gamma \subset O(n)$ allowing them are the ones denoted in parentheses:

- $\circ \ B_1^+(\mathbb{Z}_2 \ltimes \mathbb{Z}_2^3), \ B_2^+(\mathbb{Z}_2^3), \ B_1^-(\mathbb{Z}_3 \ltimes \mathbb{Z}_2^4), \ B_3^-(\mathbb{Z}_2^4)$
- $\circ \ C_1^-(\mathbb{Z}_4 \ltimes \mathbb{Z}_2^4), \ C_2^-(\mathbb{Z}_2 \ltimes \mathbb{Z}_2^4), \ C_4^-(\mathbb{Z}_2^4)$

Elementary networks	Cycles	Networks	Stability	<i>A-B-</i> stability
	000	●O	000	000000

A heteroclinic network is a connected union of finitely many cycles:

Elementary networks	Cycles	Networks	Stability	<i>A-B</i> -stability
	000	●O	000	000000

A heteroclinic network is a connected union of finitely many cycles:

Elementary networks	Cycles	Networks	Stability	<i>A-B</i> -stability
	000	●O	000	000000

A heteroclinic network is a connected union of finitely many cycles:

Definition 6 (L.&Castro [3])

A network is called elementary if

- (a) all of its subcycles are simple,
- (b) all of its connections are genuinely heteroclinic,
- (c) there are no critical elements other than the network and the origin.

ementary networks	nentary networks	Cycles 000	Networks O●	Stability 000	A-B-stability
-------------------	------------------	---------------	----------------	------------------	---------------

Lemma 7 (L.&Castro [3])

ΕI

In \mathbb{R}^4 , the following is the complete list of elementary heteroclinic networks:

• (A_2, A_2) , (A_3, A_3) , (A_3, A_4) , (A_3, A_3, A_4)

•
$$(B_2^+, B_2^+)$$
, (B_3^-, B_3^-)

•
$$(B_3^-, C_4^-), (B_3^-, B_3^-, C_4^-)$$

Definition 8 (Podvigina&Ashwin [4])

A compact invariant set $X \subset \mathbb{R}^n$ is called **predominantly asymptotically stable (p.a.s.)** if it is asymptotically stable relative to a set $N \subset \mathbb{R}^n$ and

$$\frac{\ell(B_{\varepsilon}(X)\cap N)}{\ell(B_{\varepsilon}(X))} \xrightarrow{\varepsilon \to 0} 1.$$

Definition 8 (Podvigina&Ashwin [4])

A compact invariant set $X \subset \mathbb{R}^n$ is called **predominantly asymptotically stable (p.a.s.)** if it is asymptotically stable relative to a set $N \subset \mathbb{R}^n$ and

$$\frac{\ell(B_{\varepsilon}(X)\cap N)}{\ell(B_{\varepsilon}(X))} \xrightarrow{\varepsilon \to 0} 1.$$

Stability index

Cycles	Networks	Stability	A-B-stability
000	OO	O●O	000000

Definition 9 (Podvigina&Ashwin [4])

Let $X \subset \mathbb{R}^n$ be a compact, invariant set. Denote by $\mathcal{B}(X)$ its basin of attraction and for $\varepsilon > 0$ by $B_{\varepsilon}(x)$ an ε -neighbourhood of $x \in X$. Then set

$$\Sigma_{\varepsilon}(x) := rac{\ell(B_{\varepsilon}(x) \cap \mathcal{B}(X))}{\ell(B_{\varepsilon}(x))}.$$

Define the **stability index** at x as $\sigma(x) := \sigma_+(x) - \sigma_-(x)$ where

$$\sigma_{-}(x) := \lim_{\varepsilon \to 0} \frac{\ln(\Sigma_{\varepsilon}(x))}{\ln(\varepsilon)} \quad \text{ and } \quad \sigma_{+}(x) := \lim_{\varepsilon \to 0} \frac{\ln(1 - \Sigma_{\varepsilon}(x))}{\ln(\varepsilon)}$$

Stability index

Cycles Networks Stabilit	y A-B-stability
000 00 0●0	000000

Definition 9 (Podvigina&Ashwin [4])

Let $X \subset \mathbb{R}^n$ be a compact, invariant set. Denote by $\mathcal{B}(X)$ its basin of attraction and for $\varepsilon > 0$ by $B_{\varepsilon}(x)$ an ε -neighbourhood of $x \in X$. Then set

$$\Sigma_arepsilon(x):=rac{\ell(B_arepsilon(x)\cap\mathcal{B}(X))}{\ell(B_arepsilon(x))}.$$

Define the **stability index** at x as $\sigma(x) := \sigma_+(x) - \sigma_-(x)$ where

$$\sigma_{-}(x) := \lim_{\varepsilon \to 0} \frac{\ln(\Sigma_{\varepsilon}(x))}{\ln(\varepsilon)} \quad \text{ and } \quad \sigma_{+}(x) := \lim_{\varepsilon \to 0} \frac{\ln(1 - \Sigma_{\varepsilon}(x))}{\ln(\varepsilon)}$$

Stability index

Cycles	Networks	Stability	A-B-stability
000	00	0●0	000000

Definition 9 (Podvigina&Ashwin [4])

Let $X \subset \mathbb{R}^n$ be a compact, invariant set. Denote by $\mathcal{B}(X)$ its basin of attraction and for $\varepsilon > 0$ by $B_{\varepsilon}(x)$ an ε -neighbourhood of $x \in X$. Then set

$$\Sigma_{\varepsilon}(x) := rac{\ell(B_{\varepsilon}(x) \cap \mathcal{B}(X))}{\ell(B_{\varepsilon}(x))}.$$

Define the **stability index** at x as $\sigma(x) := \sigma_+(x) - \sigma_-(x)$ where

$$\sigma_{-}(x) := \lim_{\varepsilon \to 0} \frac{\ln(\Sigma_{\varepsilon}(x))}{\ln(\varepsilon)} \quad \text{ and } \quad \sigma_{+}(x) := \lim_{\varepsilon \to 0} \frac{\ln(1 - \Sigma_{\varepsilon}(x))}{\ln(\varepsilon)}$$

The local stability index $\sigma_{loc}(x)$ is defined analogously by replacing $\Sigma_{\varepsilon}(x)$ with

$$\Sigma_{arepsilon,\delta}(x) := rac{\ell(B_arepsilon(x)\cap \mathcal{B}_\delta(X))}{\ell(B_arepsilon(x))}.$$

Establishing	а	link
--------------	---	------

Cycles Networks Stability A-B-stabili 000 00 00● 000000
--

Theorem 10 (Podvigina&Ashwin [4])

The stability index $\sigma_{(loc)}(x)$ is constant along trajectories.

 \rightarrow We can characterise stability of a heteroclinic cycle or network through finitely many indices.

Cy	cles N		Stability ,	4- <i>B</i> -stability
00	oo c	0	60 0 -	00000

Theorem 10 (Podvigina&Ashwin [4])

The stability index $\sigma_{(loc)}(x)$ is constant along trajectories.

 \rightarrow We can characterise stability of a heteroclinic cycle or network through finitely many indices.

Theorem 11 (L. [2])

Let $X \subset \mathbb{R}^n$ be a heteroclinic cycle with $\ell_1(X) < \infty$. Assume that the local stability index $\sigma_{\text{loc}}(x)$ exists for all $x \in X$. Then the following holds:

(a) X is p.a.s. $\Leftrightarrow \sigma_{loc}(x) > 0$ along all connections

Moreover, if X is isolated we also have:

(b) X is p.u. $\Leftrightarrow \sigma_{loc}(x) < 0$ along all connections

B_3^- - and A_3 -cycles	Cycles	Networks	Stability	A-B-stability
	000	00	000	●00000
B_3^- - and A_3 -cycles are geometrically identical.		ει	£3	ξ2

B_3^- - and A_3 -cyc	les	Cycles 000	Networks 00	Stability 000	A-B-stability ●00000
B_3^- and A_3 -cycles Symmetries κ_i, κ_{ij} $\kappa_1(x_1, x_2,$	is are geometrically identical. $,\kappa_{ijk}:\mathbb{R}^4 o\mathbb{R}^4$ $x_3,x_4)=(x_1,-x_2,-x_3,-x_4)$		ξ	\$3 	ξ2
	B_3^- -cycle		ŀ	l₃-cycle	
symmetry Γ	$\langle \kappa_1, \kappa_2, \kappa_3, \kappa_4 \rangle \cong \mathbb{Z}_2^4$		$\langle \kappa_{12}, \kappa$	$ _{23},\kappa_{34} angle\cong 2$	\mathbb{Z}_2^3
isotropy spaces	lines (\mathbb{Z}_2^3), planes (\mathbb{Z}_2^2), sphe	eres (\mathbb{Z}_2)	lines (\mathbb{Z}_2^2	$\frac{2}{2}$), planes (\mathbb{Z}_2)
type?	$\kappa_{123}\in \Gamma$		к	ε ₁₂₃ ∉ Γ	

B_3^- - and A_3 -cyc	les	Cycles 000	Networks 00	Stability 000	A-B-stabilit <u>y</u> ●000000
B_3^- and A_3 -cycle Symmetries κ_i, κ_{ij} $\kappa_1(x_1, x_2,$	s are geometrically identical. , $\kappa_{ijk} : \mathbb{R}^4 \to \mathbb{R}^4$ $x_3, x_4) = (x_1, -x_2, -x_3, -x_4)$		ξī	ξ3 in Fix(κ ₁₂₃	β)
	B_3^- -cycle		Þ	l₃-cycle	
symmetry Γ	$\langle \kappa_1, \kappa_2, \kappa_3, \kappa_4 angle \cong \mathbb{Z}_2^4$		$\langle \kappa_{12}, \kappa$	$_{23},\kappa_{34} angle\cong\mathbb{Z}$	\mathbb{Z}_2^3
isotropy spaces	lines (\mathbb{Z}_2^3) , planes (\mathbb{Z}_2^2) , sphe	eres (\mathbb{Z}_2)	lines (\mathbb{Z}_2^2	2), planes ($\mathbb{Z}_2)$
type?	$\kappa_{123}\in \Gamma$		κ	; ₁₂₃ ∉ Г	

ightarrow How much do the stability properties of these cycles differ?

 \rightarrow How much do the stability properties of these cycles differ?

$$\dot{x}_j = a_j x_j + \left(\sum_{i=1}^4 b_{1i} x_i^2\right) x_j + c_j x_1 x_2 x_3 x_4 x_j$$

A₃-cycles, $t_3 < 0$

 B_3^- -cycles, $-c_3 < t_3 < 0$

	Cycles	Networks	Stability	A-B-stability
(B_3^-, B_3^-) - and (A_3, A_3) -networks	000	00	000	000000

The corresponding networks are also geometrically identical

Summary	Cycles	Networks	Stability	<i>A-B</i> -stability
	000	00	000	0000€0

- Elementary networks are built from simple cycles in the simplest way imaginable.
- There are eight elementary heteroclinic networks in \mathbb{R}^4 .
- They display complex forms of non-asymptotic stability depending on the symmetry group $\Gamma\colon$
 - $\circ~$ less symmetry (type A) uniform stability along connections, all indices have the same sign
 - $\circ\,$ more symmetry (type B) varying stability configurations, indices with different sign possible
- $\rightarrow\,$ This is not apparent from their geometry.

iterature	Cycles	Networks	Stability	<i>A-B</i> -stability
	000	00	000	00000●

M. Krupa and I. Melbourne.

Asymptotic Stability of Heteroclinic Cycles in Systems with Symmetry II. *Proc. Roy. Soc. Edinb.*, 134:1177–1197, 2004.

A. Lohse.

Attraction properties and non-asymptotic stability of simple heteroclinic cycles and networks in \mathbb{R}^4 . *PhD thesis*, University of Hamburg, 2014.

A. Lohse and S. Castro.

Elementary heteroclinic networks in \mathbb{R}^4 : existence and stability. *in preparation*, 2015.

O. Podvigina and P. Ashwin.

On local attraction properties and a stability index for heteroclinic connections. *Nonlinearity*, 24:887–929, 2011.

Thank you very much for your attention.