Existence and stability of elementary heteroclinic networks in \mathbb{R}^{4}

Alexander Lohse - Department of Mathematics, Hamburg

Joint work with
Sofia Castro (University of Porto)

Dynamics Reading Group Exeter - 26th February 2015

Definition 1

Let $\Gamma \subset O(n)$ be a finite group and consider an equivariant ode on \mathbb{R}^{n}

$$
\dot{x}=f(x) \quad \text { with } \quad f(\gamma x)=\gamma f(x) \text { for all } \gamma \in \Gamma, x \in \mathbb{R}^{n} .
$$

A heteroclinic cycle is a collection of finitely many equilibria ξ_{j} and connecting trajectories $s_{j} \subset W^{u}\left(\xi_{j}\right) \cap W^{s}\left(\xi_{j+1}\right)$, where $\xi_{m+1}=\xi_{1}$.

Definition 1

Let $\Gamma \subset O(n)$ be a finite group and consider an equivariant ode on \mathbb{R}^{n}

$$
\dot{x}=f(x) \quad \text { with } \quad f(\gamma x)=\gamma f(x) \text { for all } \gamma \in \Gamma, x \in \mathbb{R}^{n} .
$$

A heteroclinic cycle is a collection of finitely many equilibria ξ_{j} and connecting trajectories $s_{j} \subset W^{u}\left(\xi_{j}\right) \cap W^{s}\left(\xi_{j+1}\right)$, where $\xi_{m+1}=\xi_{1}$.

Definition 2 (Krupa\&Melbourne [1])
(1) A heteroclinic cycle is called robust if for all j there is a subgroup $\Sigma_{j} \subset \Gamma$ such that ξ_{j+1} is a sink in $P_{j}:=\operatorname{Fix}\left(\Sigma_{j}\right)$ and $W^{u}\left(\xi_{j}\right) \cap P_{j} \subset W^{s}\left(\xi_{j+1}\right)$.
(2) A robust cycle in \mathbb{R}^{4} is called simple if

- $\operatorname{dim}\left(P_{j}\right)=2$ for all j,
- it intersects connected components of $\left(P_{j-1} \cap P_{j}\right) \backslash\{0\}$ at most once,
- the linearisation $d f\left(\xi_{j}\right)$ has no double eigenvalues.

Definition 2 (Krupa\&Melbourne [1])

(1) A heteroclinic cycle is called robust if for all j there is a subgroup $\Sigma_{j} \subset \Gamma$ such that ξ_{j+1} is a sink in $P_{j}:=\operatorname{Fix}\left(\Sigma_{j}\right)$ and $W^{u}\left(\xi_{j}\right) \cap P_{j} \subset W^{s}\left(\xi_{j+1}\right)$.
(2) A robust cycle in \mathbb{R}^{4} is called simple if

- $\operatorname{dim}\left(P_{j}\right)=2$ for all j,
- it intersects connected components of $\left(P_{j-1} \cap P_{j}\right) \backslash\{0\}$ at most once,
- the linearisation $d f\left(\xi_{j}\right)$ has no double eigenvalues.

Transverse eigenvalues ("away from the cycle") $t_{j} \gtrless 0$ influence stability.

Definition 3 (Krupa\&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^{4}$ is of

- type \mathbf{A} if and only if $\Sigma_{j} \cong \mathbb{Z}_{2}$ for all j,
- type B if and only if X lies in a $3 d$ fixed-point subspace $Q \subset \mathbb{R}^{4}$,
- type \mathbf{C} if and only if it is not of type A or B.

Lemma 4 (Krupa\&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^{4}$ is of type A if and only if there is no element $\gamma \in \Gamma$ that acts as a reflection on \mathbb{R}^{4}.

Definition 3 (Krupa\&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^{4}$ is of

- type \mathbf{A} if and only if $\Sigma_{j} \cong \mathbb{Z}_{2}$ for all j,
- type B if and only if X lies in a 3d fixed-point subspace $Q \subset \mathbb{R}^{4}$,
- type \mathbf{C} if and only if it is not of type A or B.

Lemma 4 (Krupa\&Melbourne [1])

A simple heteroclinic cycle $X \subset \mathbb{R}^{4}$ is of type A if and only if there is no element $\gamma \in \Gamma$ that acts as a reflection on \mathbb{R}^{4}.

Lemma 5 (Krupa\&Melbourne [1])

There are seven simple heteroclinic cycles of types B and C in \mathbb{R}^{4} and the only finite groups $\Gamma \subset O(n)$ allowing them are the ones denoted in parentheses:

- $B_{1}^{+}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{2}^{3}\right), B_{2}^{+}\left(\mathbb{Z}_{2}^{3}\right), B_{1}^{-}\left(\mathbb{Z}_{3} \ltimes \mathbb{Z}_{2}^{4}\right), B_{3}^{-}\left(\mathbb{Z}_{2}^{4}\right)$
$\circ C_{1}^{-}\left(\mathbb{Z}_{4} \ltimes \mathbb{Z}_{2}^{4}\right), C_{2}^{-}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{2}^{4}\right), C_{4}^{-}\left(\mathbb{Z}_{2}^{4}\right)$

A heteroclinic network is a connected union of finitely many cycles:

A heteroclinic network is a connected union of finitely many cycles:

A heteroclinic network is a connected union of finitely many cycles:

Definition 6 (L.\&Castro [3])
A network is called elementary if
(a) all of its subcycles are simple,
(b) all of its connections are genuinely heteroclinic,
(c) there are no critical elements other than the network and the origin.

Lemma 7 (L.\&Castro [3])
In \mathbb{R}^{4}, the following is the complete list of elementary heteroclinic networks:

- $\left(A_{2}, A_{2}\right),\left(A_{3}, A_{3}\right),\left(A_{3}, A_{4}\right),\left(A_{3}, A_{3}, A_{4}\right)$
- $\left(B_{2}^{+}, B_{2}^{+}\right),\left(B_{3}^{-}, B_{3}^{-}\right)$
- $\left(B_{3}^{-}, C_{4}^{-}\right),\left(B_{3}^{-}, B_{3}^{-}, C_{4}^{-}\right)$

Definition 8 (Podvigina\&Ashwin [4])

A compact invariant set $X \subset \mathbb{R}^{n}$ is called predominantly asymptotically stable (p.a.s.) if it is asymptotically stable relative to a set $N \subset \mathbb{R}^{n}$ and

$$
\frac{\ell\left(B_{\varepsilon}(X) \cap N\right)}{\ell\left(B_{\varepsilon}(X)\right)} \xrightarrow{\varepsilon \rightarrow 0} 1 .
$$

Definition 8 (Podvigina\&Ashwin [4])

A compact invariant set $X \subset \mathbb{R}^{n}$ is called predominantly asymptotically stable (p.a.s.) if it is asymptotically stable relative to a set $N \subset \mathbb{R}^{n}$ and

$$
\frac{\ell\left(B_{\varepsilon}(X) \cap N\right)}{\ell\left(B_{\varepsilon}(X)\right)} \xrightarrow{\varepsilon \rightarrow 0} 1 .
$$

Definition 9 (Podvigina\&Ashwin [4])

Let $X \subset \mathbb{R}^{n}$ be a compact, invariant set. Denote by $\mathcal{B}(X)$ its basin of attraction and for $\varepsilon>0$ by $B_{\varepsilon}(x)$ an ε-neighbourhood of $x \in X$. Then set

$$
\Sigma_{\varepsilon}(x):=\frac{\ell\left(B_{\varepsilon}(x) \cap \mathcal{B}(X)\right)}{\ell\left(B_{\varepsilon}(x)\right)} .
$$

Define the stability index at x as $\sigma(x):=\sigma_{+}(x)-\sigma_{-}(x)$ where

$$
\sigma_{-}(x):=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(\Sigma_{\varepsilon}(x)\right)}{\ln (\varepsilon)} \quad \text { and } \quad \sigma_{+}(x):=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(1-\Sigma_{\varepsilon}(x)\right)}{\ln (\varepsilon)}
$$

Definition 9 (Podvigina\&Ashwin [4])

Let $X \subset \mathbb{R}^{n}$ be a compact, invariant set. Denote by $\mathcal{B}(X)$ its basin of attraction and for $\varepsilon>0$ by $B_{\varepsilon}(x)$ an ε-neighbourhood of $x \in X$. Then set

$$
\Sigma_{\varepsilon}(x):=\frac{\ell\left(B_{\varepsilon}(x) \cap \mathcal{B}(X)\right)}{\ell\left(B_{\varepsilon}(x)\right)} .
$$

Define the stability index at x as $\sigma(x):=\sigma_{+}(x)-\sigma_{-}(x)$ where

$$
\sigma_{-}(x):=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(\sum_{\varepsilon}(x)\right)}{\ln (\varepsilon)} \quad \text { and } \quad \sigma_{+}(x):=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(1-\Sigma_{\varepsilon}(x)\right)}{\ln (\varepsilon)}
$$

Definition 9 (Podvigina\&Ashwin [4])

Let $X \subset \mathbb{R}^{n}$ be a compact, invariant set. Denote by $\mathcal{B}(X)$ its basin of attraction and for $\varepsilon>0$ by $B_{\varepsilon}(x)$ an ε-neighbourhood of $x \in X$. Then set

$$
\Sigma_{\varepsilon}(x):=\frac{\ell\left(B_{\varepsilon}(x) \cap \mathcal{B}(X)\right)}{\ell\left(B_{\varepsilon}(x)\right)} .
$$

Define the stability index at x as $\sigma(x):=\sigma_{+}(x)-\sigma_{-}(x)$ where

$$
\sigma_{-}(x):=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(\Sigma_{\varepsilon}(x)\right)}{\ln (\varepsilon)} \quad \text { and } \quad \sigma_{+}(x):=\lim _{\varepsilon \rightarrow 0} \frac{\ln \left(1-\Sigma_{\varepsilon}(x)\right)}{\ln (\varepsilon)}
$$

The local stability index $\sigma_{\text {loc }}(x)$ is defined analogously by replacing $\Sigma_{\varepsilon}(x)$ with

$$
\Sigma_{\varepsilon, \delta}(x):=\frac{\ell\left(B_{\varepsilon}(x) \cap \mathcal{B}_{\delta}(X)\right)}{\ell\left(B_{\varepsilon}(x)\right)}
$$

Theorem 10 (Podvigina\&Ashwin [4])
The stability index $\sigma_{(1 \mathrm{oc})}(x)$ is constant along trajectories.
\rightarrow We can characterise stability of a heteroclinic cycle or network through finitely many indices.

Theorem 10 (Podvigina\&Ashwin [4])
The stability index $\sigma_{(\mathrm{loc})}(x)$ is constant along trajectories.
\rightarrow We can characterise stability of a heteroclinic cycle or network through finitely many indices.

Theorem 11 (L. [2])

Let $X \subset \mathbb{R}^{n}$ be a heteroclinic cycle with $\ell_{1}(X)<\infty$. Assume that the local stability index $\sigma_{\operatorname{loc}}(x)$ exists for all $x \in X$. Then the following holds:
(a) X is p.a.s. $\Leftrightarrow \sigma_{\operatorname{loc}}(x)>0$ along all connections

Moreover, if X is isolated we also have:
(b) X is p.u. $\quad \Leftrightarrow \sigma_{\text {loc }}(x)<0$ along all connections
B_{3}^{-}- and A_{3}-cycles are geometrically identical.

B_{3}^{-}- and A_{3}-cycles

B_{3}^{-}- and A_{3}-cycles are geometrically identical.
Symmetries $\kappa_{i}, \kappa_{i j}, \kappa_{i j k}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$

$$
\kappa_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1},-x_{2},-x_{3},-x_{4}\right)
$$

B_{3}^{-}-cycle
A_{3}-cycle

symmetry Γ	$\left\langle\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\rangle \cong \mathbb{Z}_{2}^{4}$	$\left\langle\kappa_{12}, \kappa_{23}, \kappa_{34}\right\rangle \cong \mathbb{Z}_{2}^{3}$
isotropy spaces	lines $\left(\mathbb{Z}_{2}^{3}\right)$, planes $\left(\mathbb{Z}_{2}^{2}\right)$, spheres $\left(\mathbb{Z}_{2}\right)$	lines $\left(\mathbb{Z}_{2}^{2}\right)$, planes $\left(\mathbb{Z}_{2}\right)$
type?	$\kappa_{123} \in \Gamma$	$\kappa_{123} \notin \Gamma$

B_{3}^{-}- and A_{3}-cycles

B_{3}^{-}- and A_{3}-cycles are geometrically identical.
Symmetries $\kappa_{i}, \kappa_{i j}, \kappa_{i j k}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$

$$
\kappa_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1},-x_{2},-x_{3},-x_{4}\right)
$$

-

B_{3}^{-}-cycle
A_{3}-cycle

symmetry Γ	$\left\langle\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\rangle \cong \mathbb{Z}_{2}^{4}$	$\left\langle\kappa_{12}, \kappa_{23}, \kappa_{34}\right\rangle \cong \mathbb{Z}_{2}^{3}$
isotropy spaces	lines $\left(\mathbb{Z}_{2}^{3}\right)$, planes $\left(\mathbb{Z}_{2}^{2}\right)$, spheres $\left(\mathbb{Z}_{2}\right)$	lines $\left(\mathbb{Z}_{2}^{2}\right)$, planes $\left(\mathbb{Z}_{2}\right)$
type?	$\kappa_{123} \in \Gamma$	$\kappa_{123} \notin \Gamma$

B_{3}^{-}- and A_{3}-cycles are geometrically identical.
Symmetries $\kappa_{i}, \kappa_{i j}, \kappa_{i j k}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$

$$
\kappa_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1},-x_{2},-x_{3},-x_{4}\right)
$$

	B_{3}^{-}-cycle	A_{3}-cycle
symmetry Γ	$\left\langle\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\rangle \cong \mathbb{Z}_{2}^{4}$	$\left\langle\kappa_{12}, \kappa_{23}, \kappa_{34}\right\rangle \cong \mathbb{Z}_{2}^{3}$
isotropy spaces	lines $\left(\mathbb{Z}_{2}^{3}\right)$, planes $\left(\mathbb{Z}_{2}^{2}\right)$, spheres $\left(\mathbb{Z}_{2}\right)$	lines $\left(\mathbb{Z}_{2}^{2}\right)$, planes $\left(\mathbb{Z}_{2}\right)$
type?	$\kappa_{123} \in \Gamma$	$\kappa_{123} \notin \Gamma$

\rightarrow How much do the stability properties of these cycles differ?
B_{3}^{-}- and A_{3}-cycles are geometrically identical.
Symmetries $\kappa_{i}, \kappa_{i j}, \kappa_{i j k}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$

$$
\kappa_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1},-x_{2},-x_{3},-x_{4}\right)
$$

	B_{3}^{-}-cycle	A_{3}-cycle
symmetry Γ	$\left\langle\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\rangle \cong \mathbb{Z}_{2}^{4}$	$\left\langle\kappa_{12}, \kappa_{23}, \kappa_{34}\right\rangle \cong \mathbb{Z}_{2}^{3}$
isotropy spaces	lines $\left(\mathbb{Z}_{2}^{3}\right)$, planes $\left(\mathbb{Z}_{2}^{2}\right)$, spheres $\left(\mathbb{Z}_{2}\right)$	lines $\left(\mathbb{Z}_{2}^{2}\right)$, planes $\left(\mathbb{Z}_{2}\right)$
type?	$\kappa_{123} \in \Gamma$	$\kappa_{123} \notin \Gamma$

\rightarrow How much do the stability properties of these cycles differ?

$$
\dot{x}_{j}=a_{j} x_{j}+\left(\sum_{i=1}^{4} b_{1 i} x_{i}^{2}\right) x_{j}+c_{j} x_{1} x_{2} x_{3} x_{4} x_{j}
$$

B_{3}^{-}- and A_{3}-cycles - stability

A_{3}-cycles, $t_{3}<0$

$$
B_{3}^{-} \text {-cycles, }-c_{3}<t_{3}<0
$$

$$
B_{3}^{-} \text {-cycles, } t_{3}<-c_{3}<0
$$

The corresponding networks are also geometrically identical ...
... but their stability properties differ:

- Elementary networks are built from simple cycles in the simplest way imaginable.
- There are eight elementary heteroclinic networks in \mathbb{R}^{4}.
- They display complex forms of non-asymptotic stability depending on the symmetry group 「:
- less symmetry (type A) - uniform stability along connections, all indices have the same sign
- more symmetry (type B) - varying stability configurations, indices with different sign possible
\rightarrow This is not apparent from their geometry.
M. Krupa and I. Melbourne.

Asymptotic Stability of Heteroclinic Cycles in Systems with Symmetry II.
Proc. Roy. Soc. Edinb., 134:1177-1197, 2004.
A. Lohse.

Attraction properties and non-asymptotic stability of simple heteroclinic cycles and networks in \mathbb{R}^{4}. PhD thesis, University of Hamburg, 2014.
A. Lohse and S. Castro.

Elementary heteroclinic networks in \mathbb{R}^{4} : existence and stability.
in preparation, 2015.
O. Podvigina and P. Ashwin.

On local attraction properties and a stability index for heteroclinic connections.
Nonlinearity, 24:887-929, 2011.

Thank you very much for your attention.

