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Cycles Networks Stability A-B-stability

Heteroclinic cycles

Definition 1

Let Γ ⊂ O(n) be a finite group and consider an equivariant ode on Rn

ẋ = f (x) with f (γx) = γf (x) for all γ ∈ Γ, x ∈ Rn.

A heteroclinic cycle is a collection of finitely many equilibria ξj and connecting
trajectories sj ⊂W u(ξj) ∩W s(ξj+1), where ξm+1 = ξ1.
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Cycles Networks Stability A-B-stability

Simple&robust

Definition 2 (Krupa&Melbourne [1])

(1) A heteroclinic cycle is called robust if for all j there is a subgroup Σj ⊂ Γ
such that ξj+1 is a sink in Pj := Fix(Σj) and W u(ξj) ∩ Pj ⊂W s(ξj+1).

(2) A robust cycle in R4 is called simple if
◦ dim(Pj) = 2 for all j ,
◦ it intersects connected components of (Pj−1 ∩ Pj) \ {0} at most once,
◦ the linearisation df (ξj) has no double eigenvalues.

ξ1

ξ2

ξ3

−c2<0

e2>0

−r2<0

Transverse eigenvalues (“away from the cycle”) tj ≷ 0 influence stability.
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Cycles Networks Stability A-B-stability

Types A, B, C in R4

Definition 3 (Krupa&Melbourne [1])

A simple heteroclinic cycle X ⊂ R4 is of

◦ type A if and only if Σj
∼= Z2 for all j ,

◦ type B if and only if X lies in a 3d fixed-point subspace Q ⊂ R4,

◦ type C if and only if it is not of type A or B.

Lemma 4 (Krupa&Melbourne [1])

A simple heteroclinic cycle X ⊂ R4 is of type A if and only if there is no
element γ ∈ Γ that acts as a reflection on R4.

Lemma 5 (Krupa&Melbourne [1])

There are seven simple heteroclinic cycles of types B and C in R4 and the only
finite groups Γ ⊂ O(n) allowing them are the ones denoted in parentheses:

◦ B+
1 (Z2 n Z3

2), B+
2 (Z3

2), B−1 (Z3 n Z4
2), B−3 (Z4

2)

◦ C−1 (Z4 n Z4
2), C−2 (Z2 n Z4

2), C−4 (Z4
2)
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Cycles Networks Stability A-B-stability

Elementary networks

A heteroclinic network is a connected union of finitely many cycles:

ξ1

ξ2

ξ3

+

ξ1

ξ2

ξ4

= ξ1 ξ2

ξ3

ξ4

Definition 6 (L.&Castro [3])

A network is called elementary if
(a) all of its subcycles are simple,
(b) all of its connections are genuinely heteroclinic,
(c) there are no critical elements other than the network and the origin.
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Cycles Networks Stability A-B-stability

Elementary networks

Lemma 7 (L.&Castro [3])

In R4, the following is the complete list of elementary heteroclinic networks:

◦ (A2,A2), (A3,A3), (A3,A4), (A3,A3,A4)

◦ (B+
2 ,B

+
2 ), (B−3 ,B

−
3 )

◦ (B−3 ,C
−
4 ), (B−3 ,B

−
3 ,C

−
4 )
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Cycles Networks Stability A-B-stability

Non-asymptotic stability

Definition 8 (Podvigina&Ashwin [4])

A compact invariant set X ⊂ Rn is called predominantly asymptotically
stable (p.a.s.) if it is asymptotically stable relative to a set N ⊂ Rn and

`(Bε(X ) ∩ N)

`(Bε(X ))
ε→0−−−→ 1.
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Cycles Networks Stability A-B-stability

Stability index

Definition 9 (Podvigina&Ashwin [4])

Let X ⊂ Rn be a compact, invariant set. Denote by B(X ) its basin of
attraction and for ε > 0 by Bε(x) an ε-neighbourhood of x ∈ X . Then set

Σε(x) :=
`(Bε(x) ∩ B(X ))

`(Bε(x))
.

Define the stability index at x as σ(x) := σ+(x)− σ−(x) where

σ−(x) := lim
ε→0

ln(Σε(x))

ln(ε)
and σ+(x) := lim

ε→0

ln(1− Σε(x))

ln(ε)
.
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.
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Cycles Networks Stability A-B-stability

Establishing a link

Theorem 10 (Podvigina&Ashwin [4])

The stability index σ(loc)(x) is constant along trajectories.

→ We can characterise stability of a heteroclinic cycle or network through
finitely many indices.

Theorem 11 (L. [2])

Let X ⊂ Rn be a heteroclinic cycle with `1(X ) <∞. Assume that the local
stability index σloc(x) exists for all x ∈ X . Then the following holds:

(a) X is p.a.s. ⇔ σloc(x) > 0 along all connections

Moreover, if X is isolated we also have:

(b) X is p.u. ⇔ σloc(x) < 0 along all connections
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Cycles Networks Stability A-B-stability

B−
3 - and A3-cycles

B−3 - and A3-cycles are geometrically identical.

Symmetries κi , κij , κijk : R4 → R4

κ1(x1, x2, x3, x4) = (x1,−x2,−x3,−x4)

B−3 -cycle A3-cycle

symmetry Γ 〈κ1, κ2, κ3, κ4〉 ∼= Z4
2 〈κ12, κ23, κ34〉 ∼= Z3

2

isotropy spaces lines (Z3
2), planes (Z2

2), spheres (Z2) lines (Z2
2), planes (Z2)

type? κ123 ∈ Γ κ123 /∈ Γ

ξ1

ξ2

ξ3

→ How much do the stability properties of these cycles differ?

ẋj = ajxj +

(
4∑

i=1

b1ix
2
i

)
xj + cjx1x2x3x4xj
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Cycles Networks Stability A-B-stability

B−
3 - and A3-cycles – stability

A3-cycles, t3 < 0
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B−
3 - and A3-cycles – stability

B−3 -cycles, −c3 < t3 < 0
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Cycles Networks Stability A-B-stability

(B−
3 ,B−

3 )- and (A3,A3)-networks

ξ1

ξ2

ξ3

+

ξ1

ξ2

ξ4

= ξ1 ξ2

ξ3

ξ4

The corresponding networks are also geometrically identical . . .
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Cycles Networks Stability A-B-stability

(B−
3 ,B−

3 )- and (A3,A3)-networks

. . . but their stability properties differ:

(A3,A3)

>0/+∞
>0/+∞

>0/+∞

p.a.s.

ξ1

ξ2

ξ3

+

−∞
−∞

−∞

non-p.a.s.

ξ1

ξ2

ξ4

=

>0/+∞>0/+∞

>0/+∞

? ?

(non-)p.a.s.?

ξ1 ξ2

ξ3

ξ4

ξ1

ξ2

ξ3

+(B−3 ,B
−
3 )

(1a)(1b)(2)(3)(4)

+∞
+∞

>0

p.a.s.

+∞
+∞

>0

p.a.s.

>0

+∞

>0

p.a.s.

+∞
+∞

<0

non-p.a.s.

+∞
<0

>0

non-p.a.s.

ξ1

ξ2

ξ4

=

−∞
−∞

−∞

non-p.a.s.

+∞
<0

<0

non-p.a.s.

+∞
<0

<0
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−∞
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<0

non-p.a.s.

ξ1 ξ2

ξ3
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+∞+∞
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>0 >0

p.a.s.

+∞+∞

>0

>0 +∞

p.a.s.

>0+∞
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<0 +∞

non-p.a.s.

+∞+∞

>0

>0 >0

p.a.s.

+∞<0

>0

+∞ >0

non-p.a.s.
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Summary

Elementary networks are built from simple cycles in the simplest way
imaginable.

There are eight elementary heteroclinic networks in R4.

They display complex forms of non-asymptotic stability depending on the
symmetry group Γ:

◦ less symmetry (type A) – uniform stability along connections, all indices
have the same sign

◦ more symmetry (type B) – varying stability configurations, indices with
different sign possible

→ This is not apparent from their geometry.
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