Stability index for a riddled basin of attraction for a piecewise linear map

Ummu Atiqah Mohd Roslan and Peter Ashwin

University of Exeter, UK

10th February 2015

1/30

Objectives: Prove analytically for a specific example

- Existence of riddled basin
- Calculations of stability index

Outline:

- Piecewise linear (PWL) skew product map
- Boundary between basins
- Prove existence of riddled basin
- Stability index (point & attractor)
- Non-convergence of stability index

Motivations

- Understanding riddled basins of attraction.
- Using stability index to quantify local geometry of riddled basin of attractor.
- The results on stability index for our PWL map inspired by Keller (2014) (we use different method).

Related works for riddled basins

- Ott *et al.* (1994).
- Ashwin et al. (1998), Ashwin (2005).

The PWL model

We consider the skew product transformation in the unit square $(\theta, x) \in [0, 1]^2$ $F(\theta, x) = (T_s(\theta), h(\theta, x))$ (1)

where the chaotic base map

$$T_{s}(\theta) = \begin{cases} \frac{\theta}{s} & \text{if } 0 \leq \theta < s, \\ (\theta - s)(1 - s)^{-1} & \text{if } s < \theta \leq 1, \end{cases}$$
(2)

is the skewed doubling map and the fibre map

$$h(\theta, x) = \begin{cases} \min(\gamma x, 1) & \text{if } 0 \le \theta < s \text{ and } x < 1, \\ \delta x & \text{if } s < \theta \le 1 \text{ and } x < 1, \\ 1 & \text{if } x = 1, \end{cases}$$
(3)

where 0 < s < 1, $\gamma > 1$, $0 < \delta < 1$. NB γ and δ are expansion and contraction resp. We study the special case $\gamma = 1/\delta$.

- From (3), x = 0 and x = 1 are invariant sets.
- Thus, we denote

$$egin{aligned} &A_0 = [0,1] imes \{0\}, \ &A_1 = [0,1] imes \{1\}, \end{aligned}$$

where A_0 and A_1 are disjoint compact invariant sets.

• The basins are

$$B_0 := \mathcal{B}(A_0) = \{(\theta, x) : d(F^n(\theta, x), A_0) \to 0 \text{ as } n \to \infty\},\$$

$$B_1 := \mathcal{B}(A_1) = \{(\theta, x) : d(F^n(\theta, x), A_1) \to 0 \text{ as } n \to \infty\}.$$

• A_0 and A_1 are attractors.

Basins of attraction

Figure: Numerical approximation of the basins of attraction with $\delta = 0.8$ and s = 0.49 for map *F*. Black region is B_0 and orange region is B_1 . **NB** $B_0 \cap B_1 = \emptyset$. • Since our base map is Markov we can divide $[0,1]^2$ using the following partition:

$$[0,1]^2 = \bigcup_{k=1}^{\infty} X_k$$

where

$$\begin{split} X_k &= X_{k,1} \bigcup X_{k,2}, \\ X_{k,1} &= [0,s] \times [\delta^k, \delta^{k-1}], \\ X_{k,2} &= [s,1] \times [\delta^k, \delta^{k-1}], \end{split}$$

where \bigcup denotes the disjoint union.

• Actions of map F:

$$F(X_{k,1}) = X_{k-1}$$
 for $k \ge 2$, (4)

$$F(X_{1,1}) = A_1,$$
 (5)

$$F(X_{k,2}) = X_{k+1}$$
 for $k \ge 1$. (6)

Actions of map F

8/30

Figure: The schematic diagram for map F(1).

Figure: The effect of *F* on $X_{k,1}$ for $k \ge 2$.

Actions of map F contd.

9/30

Figure: The effect of F on $X_{1,1}$: $F(X_{1,1}) = A_1$.

Figure: The effect of *F* on $X_{k,2}$ for $k \ge 1$.

Boundary between B_0 and B_1

We consider [s, 1] ⊂ [0, 1] and investigate frequency of an orbit of θ ∈ T under T_s(θ) visit the right interval.

Define

$$n_k(\theta) := \begin{cases} 0 & \text{if } T_s^k(\theta) < s, \\ 1 & \text{if } T_s^k(\theta) > s, \end{cases}$$
(7)

• Then define # of first N points that the orbit of θ lies in [s, 1]:

$$i_N(\theta) := \sum_{k=0}^{N-1} n_k(\theta)$$
(8)

• Frequency with which the orbit of *θ* lies in [*s*, 1]:

$$\lim_{N \to \infty} \frac{i_N(\theta)}{N} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} n_k(\theta)$$
(9)

Boundary between B_0 and B_1 contd.

- We assume A_0 supports an ergodic T_s -invariant measure μ .
- For any ergodic measure $\mu \in \mathcal{P}(T_s)$

$$\lim_{N\to\infty}\frac{i_N(\theta)}{N} = \int_s^1 d\mu(\theta) \quad \text{for } \mu - \text{a.a. } \theta.$$
(10)

• Example: For Lebesgue measure

$$\lim_{N o\infty}rac{i_{\mathcal{N}}(heta)}{N}=1-s \quad ext{for} \ \ell- ext{a.a.} \ heta.$$

Definition

The basin boundary is defined as follows:

$$\hat{\varphi}_{\infty}(\theta) = \inf_{N \ge 0} \left\{ \delta^{N-2i_N(\theta)} \right\}.$$

• Introduced by Alexander et al. (1992).

Definition

A Milnor attractor A has a riddled basin if for all $x \in \mathcal{B}(A)$ and $\varepsilon > 0$, then

$$\ell(B_{\varepsilon}(x) \cap \mathcal{B}(A))\ell(B_{\varepsilon}(x) \cap \mathcal{B}(A)^{c}) > 0.$$
(11)

• Specific case:

Definition

The basin of a Milnor attractor A_0 is riddled with the basin of a second Milnor attractor A_1 , if for all $\varepsilon > 0$ and $x \in B_0$,

$$\ell(B_{\varepsilon}(x) \cap B_0) > 0 \text{ and } \ell(B_{\varepsilon}(x) \cap B_1) > 0.$$
 (12)

Schematic diagram

Theorem

For any $0 < \delta < 1$ and s < 1/2, B_0 is riddled with B_1 .

Required 4 steps of proofs:

• The union of B_0 and B_1 is full measure.

Theorem

For any $0 < \delta < 1$, 0 < s < 1, $s \neq 1/2$ and almost all θ ,

(i) if
$$x_0 < \hat{arphi}_\infty(heta)$$
 then $(heta, x_0) \in B_0$,

(ii) if
$$x_0 > \hat{\varphi}_{\infty}(\theta)$$
 then $(\theta, x_0) \in B_1$.

Hence $\ell(B_0 \cup B_1) = 1$.

- If s < 1/2, both basins have positive measure, i.e. ℓ(B₀) > 0 and ℓ(B₁) > 0.
- Show B_1 is dense in $[0,1]^2$.

15 / 30

 Show B₁ has positive measure on any neighbourhood in [0, 1]².

16 / 30

- Introduced by Podvigina and Ashwin (2011).
- To characterize local geometry of basins of attraction for heteroclinic cycles.
- Keller (2014) for chaotically driven concave maps.
- Our case: characterize local structure of riddled basin in PWL map for point & attractor

Stability index at point $(\theta, 0)$

• For a point $\theta \in [0,1]$ and $\varepsilon > 0$, define

$$\Sigma_{\varepsilon}(\theta) := \frac{\ell(B_{\varepsilon}(\theta) \cap B_0)}{\ell(B_{\varepsilon}(\theta))},$$
(13)

i.e.,

$$1 - \Sigma_{\varepsilon}(\theta) := \frac{\ell(B_{\varepsilon}(\theta) \cap B_1)}{\ell(B_{\varepsilon}(\theta))},$$
(14)

where $0 \leq \Sigma_{\varepsilon}(\theta) \leq 1$.

• Then the stability index at θ is defined to be

$$\sigma(\theta) := \sigma_{+}(\theta) - \sigma_{-}(\theta), \tag{15}$$

where

$$\sigma_-(heta) := \lim_{arepsilon o 0} \left[rac{ \log(\Sigma_arepsilon(heta)) }{\log arepsilon}
ight], \;\; \sigma_+(heta) := \lim_{arepsilon o 0} \left[rac{ \log(1-\Sigma_arepsilon(heta)) }{\log arepsilon}
ight],$$

as long as these limits converge.

 $\mathcal{P}(T_s)$ - the set of all ergodic measures for the map $T_s(\theta)$ such that $\mu \in \mathcal{P}(T_s)$.

Theorem

18 / 30

For s < 1/2, any $0 < \delta < 1$ and any $\mu \in \mathcal{P}(T_s)$, for μ -almost all θ ;

$$\sigma(\theta, 0) = \begin{cases} \frac{\log \tilde{\delta} - \log \delta}{\log \delta} \cdot \left(\frac{\lambda_{\parallel}(\theta) - \lambda_{\perp}(\theta)}{\lambda_{\parallel}(\theta)}\right) > 0 & \text{if } \lambda_{\parallel}(\theta) - \lambda_{\perp}(\theta) > 0, \\ \left(\frac{\lambda_{\parallel}(\theta) - \lambda_{\perp}(\theta)}{\lambda_{\parallel}(\theta)}\right) < 0 & \text{if } \lambda_{\parallel}(\theta) - \lambda_{\perp}(\theta) < 0, \end{cases}$$

$$(16)$$
where $\tilde{\delta} = \frac{2s\delta}{2-2s} < \delta$ and where $\lambda_{\parallel}(\theta)$ and $\lambda_{\perp}(\theta)$ are the Lyapunov exponents in the base direction and fibre direction respectively.

Express our σ in terms of Lyapunov exponents for PWL map F.

Lemma

Suppose $t := \int_0^s d\mu(\theta)$. Then the Lyapunov exponent in the base direction is

$$\lambda_{\parallel}(heta) = -t \log s - (1-t) \log(1-s).$$

Lemma

Suppose $t := \int_0^s d\mu(\theta)$. Then the Lyapunov exponent in the fibre direction is

$$\lambda_{\perp}(\theta) = (1-2t)\log \delta.$$

→ < Ξ → <</p>

NB
$$t = \int_0^s d\ell = s$$
.

Theorem

For s < 1/2, any $0 < \delta < 1$ and $\ell^1 \in \mathcal{P}(T_s)$,

(i) For l¹-almost all θ, we have θ with positive stability index,
 i.e. σ(θ, 0) > 0,

(ii) There exists a θ with negative stability index (i.e. $\sigma(\theta, 0) < 0$) if and only if $\delta < s$.

Basins of attraction with corresp. σ : (a) $\sigma > 0$ for ℓ^1 -almost all θ . (b) $\sigma < 0$ for some $\theta \Leftrightarrow \delta < s$.

21 / 30

Results: σ vs. parameter δ

22 / 30

Figure: The stability index $\sigma(\theta, 0)$ over parameter $\delta = 0.01, \ldots, 0.99$ and fixed value s = 0.49 for a typical point $\theta = 0.9643$. **NB** tanh $(\sigma) = 1$ represents the index $\sigma = +\infty$.

Stability index for attractor A_0

Let A₀ = [0, 1] × {0} be an invariant set and let ε > 0. We define

$$\Sigma_{\varepsilon}(A_0) := \frac{\ell(B_{\varepsilon}(A_0) \cap B_0)}{\ell(B_{\varepsilon}(A_0))}, \tag{17}$$

so that

$$1 - \Sigma_{\varepsilon}(A_0) := \frac{\ell(B_{\varepsilon}(A_0) \cap B_1)}{\ell(B_{\varepsilon}(A_0))},$$
(18)

where $0 \leq \Sigma_{\varepsilon}(A_0) \leq 1$.

• Then the stability index for the invariant set A₀ is defined to be

$$\sigma(A_0, B_0) := \sigma_+(A_0) - \sigma_-(A_0), \tag{19}$$

which exists when the following converge:

$$\sigma_{-}(A_{0}) := \lim_{\varepsilon \to 0} \frac{\log(\Sigma_{\varepsilon}(A_{0}))}{\log \varepsilon}, \quad \sigma_{+}(A_{0}) := \lim_{\varepsilon \to 0} \frac{\log(1 - \Sigma_{\varepsilon}(A_{0}))}{\log \varepsilon}.$$

$$(20)$$

Figure: The schematic diagram showing the neighbourhood of the attractor $A_0 = [0, 1] \times \{0\}$. B_0 is the basin for A_0 .

24 / 30

Results

Theorem

For s < 1/2, any 0 $< \delta < 1$ and $\varepsilon > 0$,

$$\sigma(A_0) = \frac{\log \tilde{\delta} - \log \delta}{\log \delta},$$

where A_0 is the attractor at the baseline.

Corollary

For s < 1/2, any 0 < δ < 1 and any $\mu \in \mathcal{P}(T_s)$, for μ -almost all θ ;

$$\sigma(heta,0) = \left\{ egin{array}{ll} \sigma({\mathcal A}_0) \cdot rac{\lambda_{\parallel}(heta) - \lambda_{\perp}(heta)}{\lambda_{\parallel}(heta)} > 0 & \textit{if } \lambda_{\parallel}(heta) - \lambda_{\perp}(heta) > 0, \ rac{\lambda_{\parallel}(heta) - \lambda_{\perp}(heta)}{\lambda_{\parallel}(heta)} < 0 & \textit{if } \lambda_{\parallel}(heta) - \lambda_{\perp}(heta) < 0, \end{array}
ight.$$

where $\sigma(A_0)$ is the stability index of A_0 .

Theorem

Suppose θ is such that

$$\limsup_{N\to\infty}\frac{i_N(\theta)}{N}\neq\liminf_{N\to\infty}\frac{i_N(\theta)}{N}.$$

Then $\sigma(\theta, 0)$ will not converge.

- Stability index as a bifurcation tool for riddled basins.
- For the case of riddled basin,
 - For Lebesgue almost all points in the invariant set, the stability indices are positive.
 - There may be some points in the invariant set that have negative stability index (iff *b* < *s*).
- Corollary stability index of a point formulated in terms of Lyapunov exponents and the stability index for a set (Loynes' exponent in Keller's paper).
- However, there are also some points for which the limits of stability indices do no converge.

→ 3 → 4 3

- The results for the stability indices are restricted to one example of a PWL map.
- **2** We compared our result with Keller's stability index.
- Seller's results more general uses powerful techniques of thermodynamic formalism to obtain σ.
- Our interest to see whether these techniques can be generalized to understand stability index in other (e.g. non-skew product) cases.

References

- Alexander, J.C., Yorke, J.A., You, Z. and Kan, I., *Riddled basin*, International Journal of Bifurcation and Chaos, 1992, 2, pp. 795–813.
- Keller, G., *Stability index for chaotically driven concave maps*, Journal of the London Mathematical Society, 2014, **2**, pp. 1–20.
- Ott, E. and Alexander, J.C. and Kan, I. and Sommerer, J.C., The transition to chaotic attractors with riddled basins, Physica D, 1994, 76, pp. 384–410.
- Podvigina, O. and Ashwin, P., On local attraction properties and a stability index for heteroclinic connections, Nonlinearity, 2011, 24, pp. 887–929.

Lohse, A.S., Attraction properties and non-asymptotic stability of simple heteroclinic cyccles and networks in \mathbb{R}^4 , Universität Hamburg, 2014 (PhD thesis).

(4) (3) (4) (4) (4)

THANKS FOR YOUR ATTENTION!

Reading Group, Exeter, 3rd February 2015 Stability index for a riddled basin for a PWL map

30 / 30

э