Heteroclinic Networks Claire Postlethwaite

Outline

Introduction

Heteroclinio Cycles

Heteroclini Networks

Summary

# Heteroclinic Networks: stability, switching and memory

Claire Postlethwaite

with: Peter Ashwin, Jonathan Dawes, Vivien Kirk, Alastair Rucklidge, Mary Silber

> Department of Mathematics University of Auckland

# Outline

#### Heteroclinic Networks

Claire Postlethwaite

#### Outline

Introduction

Heteroclinic Cycles

Heteroclini Networks

Summary

### 1 Introduction

2 Stability of Heteroclinic Cycles

The Guckenheimer–Holmes cycle

### 3 Heteroclinic Networks

- The Kirk–Silber network
- Decision network

# Outline

#### Heteroclinic Networks Claire

Postlethwait

#### Outline

#### Introduction

Heteroclinio Cycles

Heteroclinio Networks

Summary

### 1 Introduction

Stability of Heteroclinic Cycles
The Guckenheimer–Holmes cycle

#### Heteroclinic Networks

The Kirk-Silber network

Decision network

## Side-blotched lizard

#### Heteroclinic Networks

- Claire Postlethwaite
- Outline
- Introduction
- Heteroclini Cycles
- Heteroclinic Networks
- Summary

- The side-blotched lizard (*Uta stansburiana*) lives in the Pacific Coast Range of California.
- There are three types of male lizard, each with a different coloured throat indicating three types of genetically determined mating strategy.



# Side-blotched lizard



[Cartoon taken from http://www.sciencenewsforkids.org]

### Heteroclinic cycles

Heteroclinic Networks Claire

#### Outline

#### Introduction

Heteroclinio Cycles

Heteroclini Networks

Summary

### Consider the ODE:

$$\dot{x} = f(x), \qquad x \in \mathbb{R}^n.$$
 (1)

• An equilibrium 
$$\xi$$
 of (1) satisfies  $f(\xi) = 0$ .

- A solution φ<sub>j</sub> of (1) is a heteroclinic connection from ξ<sub>j</sub> to ξ<sub>j+1</sub>, if it is backward asymptotic to ξ<sub>j</sub> and forward asymptotic to ξ<sub>j+1</sub>.
- A heteroclinic cycle is a set of equilibria {ξ<sub>1</sub>,...,ξ<sub>m</sub>} and orbits {φ<sub>1</sub>,...,φ<sub>m</sub>}, where φ<sub>j</sub> is a heteroclinic connection between ξ<sub>j</sub> and ξ<sub>j+1</sub>, and ξ<sub>1</sub> ≡ ξ<sub>m+1</sub>.



# Heteroclinic cycles in systems with symmetry Field 1980, Krupa and Melbourne 1995, and many others

Heteroclinic Networks

- Claire Postlethwaite
- Outline
- Introduction
- Heteroclini Cycles
- Heteroclinio Networks
- Summary

- In systems with invariant subspaces, heteroclinic connections can exist robustly.
- Invariant subspaces arise naturally in systems with symmetry.



$$\mathbb{Z}_2 \text{ symmetry: } \kappa_3 : (x_1, x_2, x_3) \to (x_1, x_2, -x_3)$$
  
$$\operatorname{Fix}(\kappa_3) = \{(x_1, x_2, 0)\}$$

### Examples

Heteroclinic Networks Claire

Postlethwaite

Outline

Introduction

Heteroclini Cycles

Heteroclinic Networks

Summary

#### Population models

Strategy 1: Have a lot of territory. Orange-throated males establish large territories, with several females. The more females the more often they can mate.

Strategy 2: Be sneaky. Yellow-throated males are sneaky and can mimic the behaviour of females.



Strategy 3: Guard your mate. Blue-throated males defend small territories holding just a few females. Because the territories are so small they can guard their mates carefully.

#### Fluid dynamics



N. Becker and G. Ahlers

# Classification of eigenvalues

Krupa and Melbourne, 1995

Heteroclinic Networks

Claire Postlethwaite

Outline

Introduction

Heteroclinio Cycles

Heteroclinio Networks

Summary

It can be useful to classify the eigenvalues near each equilibrium.

Radial

- Contracting
- Expanding
- Transverse



### Analysis of flow near heteroclinic cycles





#### Introduction

Heteroclini Cycles

Heteroclini Networks

Summary





Local flow:  $H_1^{\text{in}} \to H_1^{\text{out}}$  $\dot{x}_2 = \lambda_u x_2,$  $\dot{x}_3 = -\lambda_s x_3.$  Global flow:  $H_1^{out} \rightarrow H_2^{in}$ Linearise flow around heteroclinic connections.

Combine local and global flow to get a Poincaré map.

# Outline

#### Heteroclinic Networks

Postlethwaite

Outline

Introductior

#### Heteroclinic Cycles

Heteroclini Networks

Summary

### Introduction

### 2 Stability of Heteroclinic Cycles

The Guckenheimer-Holmes cycle

#### B Heteroclinic Networks

The Kirk–Silber network

Decision network

### The Guckenheimer-Holmes cycle

#### Guckenheimer and Holmes, 1988



Introductio

Heteroclinic Cycles GH cycle

Heteroclinic Networks

Summary



The cycle exists in a system with symmetry  $\mathbb{Z}_3 \ltimes (\mathbb{Z}_2)^3$ .

- Contracting eigenvalue  $-\lambda_s$ , expanding eigenvalue  $\lambda_u$ .
- Local map gives  $x_2 o x_3^\delta$ ,  $\delta = \lambda_s / \lambda_u$ .
- Global map  $x_3 \rightarrow Ax_3$ .

## The Guckenheimer-Holmes cycle



Outline

Heteroclinic Cycles GH cycle

Heteroclinio Networks



- Poincaré map:  $x \to Ax^{\delta}$ .
- Fixed points exist at x = 0 and  $x = A^{1/(1-\delta)}$ .
- A resonance bifurcation at  $\delta = 1$  produces a long-period periodic orbit.

Period of orbit 
$$T \sim rac{1}{1-\delta}$$

### The Guckenheimer-Holmes cycle



Outline Introduction

Heteroclinic Cycles GH cycle

Heteroclinio Networks



- Poincaré map:  $x \to Ax^{\delta}$ .
- Fixed points exist at x = 0 and  $x = A^{1/(1-\delta)}$ .
- A resonance bifurcation at  $\delta = 1$  produces a long-period periodic orbit.

Period of orbit 
$$T \sim rac{1}{1-\delta}$$

# Noisy heteroclinic cycles

Stone and Holmes, 1990

Heteroclinic Networks Claire

Postlethwaite

Outline

Introduction

Heteroclinic Cycles

Heteroclinio Networks

Summary

Consider additive noise to a heteroclinic cycle.Mean passage time past an equilibrium

$$T \sim \frac{\log \eta}{\lambda_{\mu}}$$

where  $\eta$  is the noise amplitude



# Outline

#### Heteroclinic Networks Claire

Postlethwaite

Outline

Introduction

Heteroclinic Cycles

#### Heteroclinic Networks

KS network Decision network

Summary

### 1 Introduction

Stability of Heteroclinic Cycles
The Guckenheimer-Holmes cycle

#### 3 Heteroclinic Networks

The Kirk–Silber network
 Decision network

### Heteroclinic networks

Heteroclinic Networks Claire Postlethwaite

Outline

Heteroclinic Cvcles

Heteroclinic Networks

KS network Decision network

Summary

A heteroclinic network is a connected union of heteroclinic cycles.



- Stability conditions of the network as a whole may be quite complicated.
- Both resonance and noise in networks can give complicated behaviour.

Kirk and Silber, 1994



#### Subspace dynamics



#### Construction of maps



• The position the trajectory hits  $H_B^{\text{in},A}$  determines which equilibrium is visited next.

#### Construction of maps

Heteroclinic Networks Claire

Postlethwaite

Outline

Introduction

Heteroclinio Cycles

Heteroclinic Networks KS network

Summary

Plot the Poincare section with polar coordinates.



- If the network is attracting trajectories can *switch* one way but not the other.
- If network is not attracting, there can be periodic orbits lying close to either or both of the sub cycles.

Kirk, Postlethwaite and Rucklidge, SIADS 2012

# Noisy Kirk and Silber network

Armbruster, Stone and Kirk, 2003

- Heteroclinic Networks
- Claire Postlethwaite
- Outline
- Introduction
- Heteroclinio Cycles
- Heteroclinic Networks KS network
- Summary

- Consider additive noise.
- Depending on parameters, the 'noise ellipse' can be centered at the origin in  $H_B^{\text{in},A}$ .
- Proportion of times each cycle visited proportional to shaded area.



# Noisy Kirk and Silber network

Armbruster, Stone and Kirk, 2003

Heteroclinic Networks

Claire Postlethwaite

Outline

Introductior

Heteroclini Cycles

Heteroclinic Networks KS network

Decision network

- For certain parameter sets, noise ellipse can move into basin of attraction of one cycle or the other.
- This is termed *lift-off*.
- Lift-off can *reduce* switching.



### Decision network

#### Ashwin and Postlethwaite, 2013



- Four sub-cycles, each with four equilibria.
- Deterministic case is very complicated: numerics show switching between sub cycles.
- Addition of noise can allow memory.

### Decision network with memory

Heteroclinic Networks Claire Postlethwaite

Outline

Introduction

Heteroclini Cycles

Heteroclinic Networks KS network Decision network

Summary



We can choose parameters to have lift-off occur in the x<sub>3</sub> direction as the trajectory passes ξ<sub>5</sub>.



# Decision network with memory



Red: trajectories which visited ξ<sub>5</sub> on the previous loop.
Black, blue, green: trajectories which visited ξ<sub>6</sub>, ξ<sub>7</sub> and ξ<sub>8</sub>.
Can see lift-off in the x<sub>3</sub> direction for red points.

# Transition matrices

| With memory: |  |  |  |
|--------------|--|--|--|
|              |  |  |  |
| 0.02         |  |  |  |
| 0.09<br>0.07 |  |  |  |
|              |  |  |  |

# Outline

#### Heteroclinic Networks Claire

1 Ostietiiwa

Outline

Introduction

Heteroclinic Cycles

Heteroclinio Networks

Summary

### 1 Introduction

Stability of Heteroclinic Cycles
The Guckenheimer–Holmes cycle

#### Heteroclinic Networks

The Kirk-Silber network

Decision network

# Summary

Heteroclinic Networks

Claire Postlethwaite

Outline

Introductior

Heteroclinio Cycles

Heteroclinic Networks

Summary

- Heteroclinic cycles and networks can lose stability and produce nearby long-period periodic orbits in resonance bifurcations.
- Noisy heteroclinic cycles look like periodic orbits.
- Noisy heteroclinic networks can have much more complicated behaviour, including switching and memory.

### Acknowledgements

- Jonathan Dawes, Alastair Rucklidge, Vivien Kirk, Mary Silber, Peter Ashwin.
- London Mathematical Society.