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Side-blotched lizard

The side-blotched lizard (Uta stansburiana) lives in the
Pacific Coast Range of California.

There are three types of male lizard, each with a different
coloured throat indicating three types of genetically
determined mating strategy.
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Side-blotched lizard

Strategy 2: Be sneaky.

Yellow-throated males are
sneaky and can mimic the
behaviour of females.

Strategy 3: Guard your mate.

Blue-throated males defend small
territories holding just a few fe-
males. Because the territories are
so small they can guard their mates
carefully.

Strategy 1: Have a lot of territory.

Orange-throated males establish large territories,
with several females. The more females the more
often they can mate.

Blue-throated males can take over a
population of mainly yellow-

throated males.
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[Cartoon taken from http://www.sciencenewsforkids.org]
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Heteroclinic cycles

Consider the ODE:

ẋ = f (x), x ∈ R
n. (1)

An equilibrium ξ of (1) satisfies f (ξ) = 0.

A solution φj of (1) is a heteroclinic connection from ξj to
ξj+1, if it is backward asymptotic to ξj and forward
asymptotic to ξj+1.

A heteroclinic cycle is a set of
equilibria {ξ1, ..., ξm} and orbits
{φ1, ..., φm}, where φj is a
heteroclinic connection between ξj
and ξj+1, and ξ1 ≡ ξm+1.

ξ1 ξ2

ξ3

ξ4

ξ0
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Heteroclinic cycles in systems with symmetry

Field 1980, Krupa and Melbourne 1995, and many others

In systems with invariant subspaces, heteroclinic
connections can exist robustly.
Invariant subspaces arise naturally in systems with
symmetry.

ξ1

ξ2

x1

x2

x3

Z2 symmetry: κ3 : (x1, x2, x3) → (x1, x2,−x3)
Fix(κ3) = {(x1, x2, 0)}
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Examples

Population models

Strategy 2: Be sneaky.

Yellow-throated males are
sneaky and can mimic the
behaviour of females.

Strategy 3: Guard your mate.

Blue-throated males defend small
territories holding just a few fe-
males. Because the territories are
so small they can guard their mates
carefully.

Strategy 1: Have a lot of territory.

Orange-throated males establish large territories,
with several females. The more females the more
often they can mate.

Blue-throated males can take over a
population of mainly yellow-

throated males.
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Fluid dynamics

N. Becker and G. Ahlers
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Classification of eigenvalues

Krupa and Melbourne, 1995

It can be useful to classify the eigenvalues near each
equilibrium.

Radial

Contracting

Expanding

Transverse

ξ1

ξ2

x1

x2

x3
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Analysis of flow near heteroclinic cycles

ξ1

ξ1

ξ2
ξ2

ξ3
H in

1 H in

2

Hout

1

Local flow: H in

1 → Hout

1

ẋ2 = λux2,

ẋ3 = −λsx3.

Global flow: Hout

1 → H in

2

Linearise flow around
heteroclinic connections.

Combine local and global flow to get a Poincaré map.
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The Guckenheimer–Holmes cycle

Guckenheimer and Holmes, 1988

��

�
�
�
�

�
�
�
�

ξ1

ξ2

ξ3

The cycle exists in a system with symmetry Z3 ⋉ (Z2)
3.

Contracting eigenvalue −λs , expanding eigenvalue λu.

Local map gives x2 → xδ3 , δ = λs/λu.

Global map x3 → Ax3.
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The Guckenheimer–Holmes cycle

����
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ξ1

ξ2

ξ3

Poincaré map: x → Axδ.

Fixed points exist at x = 0 and x = A1/(1−δ).

A resonance bifurcation at δ = 1 produces a long-period
periodic orbit.

Period of orbit T ∼
1

1− δ
.
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The Guckenheimer–Holmes cycle

ξ1

ξ2

ξ3

Poincaré map: x → Axδ.

Fixed points exist at x = 0 and x = A1/(1−δ).

A resonance bifurcation at δ = 1 produces a long-period
periodic orbit.

Period of orbit T ∼
1

1− δ
.
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Noisy heteroclinic cycles

Stone and Holmes, 1990

Consider additive noise to a heteroclinic cycle.

Mean passage time past an equilibrium

T ∼
log η

λu

where η is the noise amplitude
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Heteroclinic networks

A heteroclinic network is a connected union of heteroclinic
cycles.

ξ1 ξ2

ξ3

ξ4

ξ0

Stability conditions of the network as a whole may be
quite complicated.

Both resonance and noise in networks can give
complicated behaviour.
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Kirk and Silber network

Kirk and Silber, 1994

A

Y

X

P
B
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Kirk and Silber network

Subspace dynamics

A
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Kirk and Silber network

Construction of maps

A

B

Y

X

H
in,A
B

H
out,Y
B

H
out,X
B

The position the trajectory hits H in,A
B determines which

equilibrium is visited next.
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Kirk and Silber network

Construction of maps

Plot the Poincare section with polar coordinates.

0

log x2

2ππ
2

π
θ3

If the network is attracting trajectories can switch one way
but not the other.

If network is not attracting, there can be periodic orbits
lying close to either or both of the sub cycles.

Kirk, Postlethwaite and Rucklidge, SIADS 2012
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Noisy Kirk and Silber network

Armbruster, Stone and Kirk, 2003

Consider additive noise.

Depending on parameters, the ‘noise ellipse’ can be
centered at the origin in H

in,A
B .

Proportion of times each cycle visited proportional to
shaded area.
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Noisy Kirk and Silber network

Armbruster, Stone and Kirk, 2003

For certain parameter sets, noise ellipse can move into
basin of attraction of one cycle or the other.

This is termed lift-off.

Lift-off can reduce switching.
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Decision network

Ashwin and Postlethwaite, 2013

replacements

v1

v2

v3 v4

v5 v6 v7 v8

Four sub-cycles, each with four equilibria.

Deterministic case is very complicated: numerics show
switching between sub cycles.

Addition of noise can allow memory.
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Decision network with memory

v1

v2

v3 v4

v5 v6 v7 v8

We can choose parameters to have lift-off occur in the x3
direction as the trajectory passes ξ5.
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Decision network with memory

Without memory: With memory:
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Red: trajectories which visited ξ5 on the previous loop.

Black, blue, green: trajectories which visited ξ6, ξ7 and ξ8.

Can see lift-off in the x3 direction for red points.
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Transition matrices

Without memory: With memory:









0.46 0.26 0.18 0.10
0.47 0.23 0.20 0.10
0.49 0.23 0.18 0.10
0.50 0.22 0.18 0.10

















0.63 0.33 0.03 0.02
0.49 0.27 0.16 0.08
0.54 0.24 0.13 0.09
0.52 0.27 0.14 0.07
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Summary

Heteroclinic cycles and networks can lose stability and
produce nearby long-period periodic orbits in resonance
bifurcations.

Noisy heteroclinic cycles look like periodic orbits.

Noisy heteroclinic networks can have much more
complicated behaviour, including switching and memory.
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