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What might happen in a warmer world?

The ultimate objective is ... stabilisation of greenhouse gas
concentrations in the atmosphere at a level that would prevent
dangerous anthropogenic interference with the climate
system...

... such a level should be achieved within a time-frame sufficient
to allow ecosystems to adapt naturally to climate change, to
ensure food production is not threatened, and to enable
economic development to proceed in a sustainable manner.
The United Nations Framework Convention on Climate
Change (UNFCCC)

dangerous levels and dangerous rates for the climate
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Other real world systems

» The compost-bomb instability
C. Luke & P. Cox 2011 Eur. J. Soil Sci. 62, 5-12.

» The thermo-haline circulation with freshwater forcing

V. Lucarini, S. Calmanti & V. Artale 2005 Climate Dynamics 24,
253-262.

» Type lll neural excitability
J. Mitry, M. McCarthy, N. Kopell & and M. Wechselberger 2013
J. Math. Neuro. 3, 12.
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A trajectory tracks the continuously
changing stable state or destabilises.



The mathematical description

d X system variable;
FX = f(x, A(et)) X external input;
t e rate of change.

For every fixed value of A there is a stable state x(\).

» A rate-induced bifurcation is a non-autonomous instability.

» ¢c associated with validity boundary of Fenichel’s theorem.



Questions

For different systems f(x, A(et)) and external inputs A(et):

» Does the system have a critical rate ¢.?

» Can we compute ¢;?

» What is the threshold seperating initial conditions that track
X(A(et)) from those that destabilise?



The obvious... and the non-obvious,
both simple and complicated
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A system with an obvious threshold
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A system with an obvious threshold
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Thresholds in multiple timescale systems
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Thresholds in multiple timescale systems

O<ox1 and T =6t
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Thresholds in multiple timescale systems

O<ox1 and T =6t

ax adx
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Changing the external input



Thresholds in multiple timescale systems




Thresholds in multiple timescale systems

Assumptions:

dx ¢ » Thereis afold F tangent to the
5? = f(xy.A0) fast x direction: 2 =0, 3)2(2 £ 0.
= = gby0)
d\ » For fixed A there is unique single
ar eh(}) curve of stable states X(\) close
to the fold.

» The critical manifold S can be
expressed as a graph y(x, \).

» The system has 1 fast and 2 slow
variables: 0 < § << e < 1.



A closer look at the equations

Project onto S:
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A closer look at the equations

Project onto S:
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Classification of folded singlarities
In the desingularised system time is reverse on S”.

Desroches et al, 2012



Along the fold F when 6 # 0




Existence results for multi-scale systems

Existence of critical rates:

There is a critical rate ¢. if for some point (x, y, A) at time t both
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Existence of non-obvious thresholds:

An instability threshold requires a folded saddle singularity.
Moreover, the system is guaranteed to have an instability
threshold, if a folded saddle is the only folded singularity.



Simple threshold with an isolated folded saddle

SH =y A+ x(x=1) F=-x G =c(max—N).




Complicated threshold after a folded saddle-node

bifurcation
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Composite canards form the boundary




Conclusions
Rate-induced bifurcations are of key importance in many

real-world system. We seek to identify critical rates and
instability thresholds in a range of systems.

Obvious rate-induced bifurcations: find a hetroclinic connection.

Non-obvious rate-induced bifurcations: use geometric singular
perturbation theory, find folded singularities and canards:

» Existence results for critical rates and instability thresholds.
» Find a new complicated banded threshold.

» |dentify the structure with new composite canards.
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