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What might happen in a warmer world?

The ultimate objective is ... stabilisation of greenhouse gas

concentrations in the atmosphere at a level that would prevent

dangerous anthropogenic interference with the climate

system...

... such a level should be achieved within a time-frame sufficient

to allow ecosystems to adapt naturally to climate change, to

ensure food production is not threatened, and to enable

economic development to proceed in a sustainable manner.

The United Nations Framework Convention on Climate

Change (UNFCCC)

dangerous levels and dangerous rates for the climate
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Other real world systems

◮ The compost-bomb instability

C. Luke & P. Cox 2011 Eur. J. Soil Sci. 62, 5-12.

◮ The thermo-haline circulation with freshwater forcing

V. Lucarini, S. Calmanti & V. Artale 2005 Climate Dynamics 24,

253-262.

◮ Type III neural excitability

J. Mitry, M. McCarthy, N. Kopell & and M. Wechselberger 2013

J. Math. Neuro. 3, 12.
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Dynamic bifurcation

A trajectory tracks the continuously

changing stable state or destabilises.



The mathematical description

dx

dt
= f (x , λ(ǫt))

x system variable;

λ external input;

ǫ rate of change.

For every fixed value of λ there is a stable state x̃(λ).

◮ A rate-induced bifurcation is a non-autonomous instability.

◮ ǫc associated with validity boundary of Fenichel’s theorem.



Questions

For different systems f (x , λ(ǫt)) and external inputs λ(ǫt):

◮ Does the system have a critical rate ǫc?

◮ Can we compute ǫc?

◮ What is the threshold seperating initial conditions that track

x̃(λ(ǫt)) from those that destabilise?



The obvious... and the non-obvious,

both simple and complicated
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A system with an obvious threshold



A system with an obvious threshold

ǫ < ǫc
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Thresholds in multiple timescale systems

0 < δ ≪ 1 and T = δt

δ
dx

dt
= y + λ+ x(x − 1)

dy

dt
= −x

dx

dT
= y + λ+ x(x − 1)

dy

dT
= −δx
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Thresholds in multiple timescale systems
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Changing the external input



Thresholds in multiple timescale systems
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Thresholds in multiple timescale systems

δ
dx

dt
= f (x , y , λ, δ)

dy

dt
= g(x , y , λ, δ)

dλ

dt
= ǫh(λ)

Assumptions:

◮ There is a fold F tangent to the

fast x direction: ∂f
∂x

= 0, ∂2f
∂x2 6= 0.

◮ For fixed λ there is unique single

curve of stable states x̃(λ) close

to the fold.

◮ The critical manifold S can be

expressed as a graph y(x , λ).

◮ The system has 1 fast and 2 slow

variables: 0 < δ << ǫ < 1.



A closer look at the equations

δ
dx

dt
= f (x , y , λ, δ)

dy

dt
= g(x , y , λ, δ)

dλ

dt
= ǫh(λ)

Project onto S:

− ∂f

∂x

∣

∣

∣

∣

S

dx

dt
=

(

g
∂f

∂y
+ h

∂f

∂λ

)
∣

∣

∣

∣

S

dλ

dt
= ǫh|S

a = b



A closer look at the equations
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Classification of folded singlarities
In the desingularised system time is reverse on Sr .

S
a

S r

z

x

F

S
a

S r

z

x

F

Desroches et al, 2012



Along the fold F when δ 6= 0
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Existence results for multi-scale systems

Existence of critical rates:

There is a critical rate ǫc if for some point (x , y , λ) at time t both

(

g
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∂y
+ h
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∂λ

)
∣

∣

∣
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F

= 0

and
d

dǫ

(

g
∂f
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+ h

∂f
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)
∣

∣

∣

∣

F

6= 0.

Existence of non-obvious thresholds:

An instability threshold requires a folded saddle singularity.

Moreover, the system is guaranteed to have an instability

threshold, if a folded saddle is the only folded singularity.



Simple threshold with an isolated folded saddle

δ dx
dt = y + λ+ x(x − 1); dy

dt = −x ; dλ
dt = ǫ(λmax − λ).
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Complicated threshold after a folded saddle-node

bifurcation
δ dx

dt
= y + λ+ x(x − 1); dy

dt
= −x ; dλ

dt
= ǫ(λ2

max − λ2)/λmax.
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Composite canards form the boundary
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Conclusions

Rate-induced bifurcations are of key importance in many

real-world system. We seek to identify critical rates and

instability thresholds in a range of systems.

Obvious rate-induced bifurcations: find a hetroclinic connection.

Non-obvious rate-induced bifurcations: use geometric singular

perturbation theory, find folded singularities and canards:

◮ Existence results for critical rates and instability thresholds.

◮ Find a new complicated banded threshold.

◮ Identify the structure with new composite canards.
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