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Real world systems

» The compost-bomb instability
C. Luke & P. Cox 2011 Eur. J. Soil Sci. 62, 5-12.

» The thermo-haline circulation with freshwater forcing

V. Lucarini, S. Calmanti & V. Artale 2005 Climate Dynamics 24,
253-262.

» Type lll neural excitability
J. Mitry, M. McCarthy, N. Kopell & and M. Wechselberger 2013
J. Math. Neuro. 3, 12.



State of the system
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State of the system

External input External input External input

A trajectory tracks the continuously
changing stable state or destabilises.



The mathematical description

X system variable;
f(x, A(et)) A external input;
e rate of change.
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For every fixed value of A there is a stable state x(\).



Questions

For different systems f(x, \(et)) and external inputs A(etf):

» Does the system have a critical rate ¢;?

» Can we compute e;?

» What is the threshold seperating initial conditions that track
X(A(et)) from those that destabilise?



The obvious... and the non-obvious,
both simple and complicated
pﬂl)/v’/

tracks or destabilises
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Thresholds in multiple timescale systems

A trajectory tracks x(\)
or destabilises and moves away in the fast x-direction.



Analysing multiple timescale systems

Fix\,0<d<landt=4T.

5% = y+A+x(x—-1) % = y+A+x(x—1)
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Thresholds in multiple timescale systems
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Assumptions:

» 1 fast and 2 slow variables:
D<d<<ex< 1.

» The critical manifold S has a
fold F tangent to the fast x

direction:
of 92f
ox — 0, ox2 7& 0.

» For fixed X there is single
curve of stable states x(\)
close to the fold.



Thresholds in multiple timescale systems
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S :={f(x,y,\,0) =0}

So,
» The critical manifold Sis a 2D.
= f(x,y,\,0)
= g(x,y.\9) » The fold F seperates S into
R an attracting part S2 and
= ¢h()) repelling part S'.

» The static stable state X(\) is
on &4,

Also, for small § > 0, S% and S’
perturb to nearby 2D manifolds S§
and S§ with the same attractivity
(Fenichel, 1971).



Look at the system on the critical manifold

Project onto S:
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Look at the system on the critical manifold

Project onto S:
ax
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Desingularise by dt = —ds(df/dx)|s:
ax of of
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Look at the system on the critical manifold

Project onto S:
5% — fx.y A 0) roject onto
dy S S P
5 = 9(ey.0) ax|sat — Tay Tox )|,
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Desingularise by dt = —ds(9f/0x)|s:
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Existence of critical rates

There is a critical rate if there is a folded singularity.
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Initial coAditions from vi/hicﬁtfajgctor?ﬁes track X (Oéréyyor cross

F and destabilise (white).



Existence of critical rates
There is a critical rate if there is a folded singularity.

There is a critical rate ¢, if for some point (x, y, A) at time t both
8_f + ha_f
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=0
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Non-obvious thresholds

There is a critical rate if there is a folded singularity.

There maybe a threshold seperating the initial conditions from
which trajectories track x (grey), and destabilise (white).



Classification of folded singlarities
In the desingularised system time is reverse on S'.
Canards v go from S2to S" along eigendirections.

Desroches et al, 2012



Along the fold F when 6 # 0

Canard 753 persists as a transverse (robust) intersection of S2
and Sf, (Szmolyan, 2001). Canards act as seperatrices.

5#0




Simple threshold with an isolated folded saddle
X =yt rrx(x—1); ¥=_—x; D= cOnax—N).

o
B 2)\max.
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Non-obvious threshold 7(;5 seperates initial conditions
that track X (grey) or destabilise (white).



Complicated threshold after a folded saddle-node

bifurcation
5% =y+r+x(x—1);
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Composite canards form the boundary




Composite canards form the boundary

white -> boundary ->




Conclusions
Rate-induced bifurcations are of key importance in many

real-world system. We seek to identify critical rates and
instability thresholds in a range of systems.

Obvious rate-induced bifurcations: find a hetroclinic connection.

Non-obvious rate-induced bifurcations: use geometric singular
perturbation theory, find folded singularities and canards:

» Existence results for critical rates and instability thresholds.
» Find a new complicated banded threshold.

» |dentify the structure with new composite canards.



Bibliography

» C. Perryman, and S. Wieczorek, “Adapting to a changing environment:
Non-obvious thresholds for rate-induced bifurcations”, arXiv:1401.5268

(preprint).

» S. Wieczorek, P. Ashwin, C. Luke, and P. Cox, “Excitability in ramped
systems: the compost-bomb instability” Proc. R. Soc. A 467, 1243
(2010).

> J. Mitry, M. McCarthy, N. Kopell, and M. Wechselberger “Excitable
neurons, firing threshold manifolds and canards” J. Math. Neuro. 3, 12
(2013).

» C. K. R.T. Jones, “Geometric singular perturbation theory”, in
Dynamical Systems, Lecture Notes in Mathematics Vol. 1609 (Springer,
Berlin Heidelberg, 1995).

» M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, C. H. Osinga,
and M. Wechselberger, “Mixed mode oscillations with multiple time
scales”, SIAM Review 54, 211 (2012).





