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Real world systems

◮ The compost-bomb instability

C. Luke & P. Cox 2011 Eur. J. Soil Sci. 62, 5-12.

◮ The thermo-haline circulation with freshwater forcing

V. Lucarini, S. Calmanti & V. Artale 2005 Climate Dynamics 24,

253-262.

◮ Type III neural excitability

J. Mitry, M. McCarthy, N. Kopell & and M. Wechselberger 2013

J. Math. Neuro. 3, 12.
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Dynamic bifurcation

A trajectory tracks the continuously

changing stable state or destabilises.



The mathematical description

dx

dt
= f (x , λ(ǫt))

x system variable;

λ external input;

ǫ rate of change.

For every fixed value of λ there is a stable state x̃(λ).



Questions

For different systems f (x , λ(ǫt)) and external inputs λ(ǫt):

◮ Does the system have a critical rate ǫc?

◮ Can we compute ǫc?

◮ What is the threshold seperating initial conditions that track

x̃(λ(ǫt)) from those that destabilise?



The obvious... and the non-obvious,

both simple and complicated
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Thresholds in multiple timescale systems
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Analysing multiple timescale systems

Fix λ, 0 < δ ≪ 1 and t = δT .

δ
dx

dt
= y + λ+ x(x − 1)

dy

dt
= −x

dx

dT
= y + λ+ x(x − 1)

dy

dT
= −δx

δ = 0

y

x

x = 0 x = 1
2

y = −λ − 1
4

Sa
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S := {−x2 + x − λ}

δ 6= 0
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?
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Thresholds in multiple timescale systems

δ
dx

dt
= f (x , y , λ, δ)

dy

dt
= g(x , y , λ, δ)

dλ

dt
= ǫh(λ)

S := {f (x , y , λ,0) = 0}

Assumptions:

◮ 1 fast and 2 slow variables:

0 < δ << ǫ < 1.

◮ The critical manifold S has a

fold F tangent to the fast x

direction:

∂f
∂x = 0, ∂2f

∂x2 6= 0.

◮ For fixed λ there is single

curve of stable states x̃(λ)
close to the fold.



Thresholds in multiple timescale systems

δ
dx

dt
= f (x , y , λ, δ)

dy

dt
= g(x , y , λ, δ)

dλ

dt
= ǫh(λ)

S := {f (x , y , λ,0) = 0}

So,

◮ The critical manifold S is a 2D.

◮ The fold F seperates S into

an attracting part Sa and

repelling part Sr .

◮ The static stable state x̃(λ) is

on Sa.

Also, for small δ > 0, Sa and Sr

perturb to nearby 2D manifolds Sa
δ

and Sr
δ with the same attractivity

(Fenichel, 1971).



Look at the system on the critical manifold

δ
dx

dt
= f (x , y , λ, δ)

dy

dt
= g(x , y , λ, δ)

dλ

dt
= ǫh(λ)

S := {f (x , y , λ,0) = 0}
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Look at the system on the critical manifold
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Look at the system on the critical manifold

δ
dx

dt
= f (x , y , λ, δ)

dy

dt
= g(x , y , λ, δ)

dλ

dt
= ǫh(λ)
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Existence of critical rates

There is a critical rate if there is a folded singularity.
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Existence of critical rates

There is a critical rate if there is a folded singularity.

There is a critical rate ǫc if for some point (x , y , λ) at time t both

(
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Non-obvious thresholds

There is a critical rate if there is a folded singularity.

There maybe a threshold seperating the initial conditions from

which trajectories track x̃ (grey), and destabilise (white).



Classification of folded singlarities
In the desingularised system time is reverse on Sr .

Canards γ go from Sa to Sr along eigendirections.
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Along the fold F when δ 6= 0

Canard γS
δ persists as a transverse (robust) intersection of Sa

δ

and Sr
δ, (Szmolyan, 2001). Canards act as seperatrices.
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Simple threshold with an isolated folded saddle
δ dx

dt
= y + λ+ x(x − 1); dy

dt
= −x ; dλ

dt
= ǫ(λmax − λ).

ǫc =
1

2λmax
.
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Complicated threshold after a folded saddle-node

bifurcation
δ dx

dt
= y + λ+ x(x − 1); dy

dt
= −x ; dλ

dt
= ǫ(λ2

max − λ2)/λmax.
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Composite canards form the boundary
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Composite canards form the boundary

white -> boundary -> grey -> boundary



Conclusions

Rate-induced bifurcations are of key importance in many

real-world system. We seek to identify critical rates and

instability thresholds in a range of systems.

Obvious rate-induced bifurcations: find a hetroclinic connection.

Non-obvious rate-induced bifurcations: use geometric singular

perturbation theory, find folded singularities and canards:

◮ Existence results for critical rates and instability thresholds.

◮ Find a new complicated banded threshold.

◮ Identify the structure with new composite canards.
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