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Biological background

The ER is the largest membrane-bound organelle and spreads
throughout the cytoplasm as one highly complicated

interconnected network.
It serves important roles in protein synthesis, calcium storage, ect.

Image is taken from Stiess, M and Bradke, F. Nature Cell Biology13:10-11(2011).
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Biological background

The ER network in a tobacco leaf epidermal cells (Sparkes2009)

control condition latrunculin B treated condition

ER structure is composed of tubules and cisternae.
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Geometry graph representation
control ER

(c) t=16.0 s

1µm

(d) t=17.6 s

(e) t=19.2 s (f) t=20.8 s

treated ER
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Euclidean Steiner Network
A Steiner tree (ST) is a tree whose length cannot be shortened by
a small perturbation of Steiner points, even when splitting is
allowed (Gilbert and Pollak 1968).
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Euclidean Steiner Network
A Steiner tree (ST) is a tree whose length cannot be shortened by
a small perturbation of Steiner points, even when splitting is
allowed (Gilbert and Pollak 1968).

We say G is an Euclidean Steiner network (ESN) between these
terminals (and the additional points are Steiner points) if no
small perturbation of Steiner points will decrease the length, even
if splitting is allowed

A B C D
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Instantaneous ER network analysis
Angle distribution
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Instantaneous ER network analysis
ER network vs ESN

control
1µm

treat

1µm

These suggest that the ER networks are well modelled as perturbed

ESNs.
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ER dynamics in treated condition
We model the motion of non-persistent nodes (junctions in the
ER) xi(t) ∈ R2 for i = 1..M as

ẋi = −a∇xi
f(xi, . . . , xP ) +

√
2σξ(t) (1)

f(xi, . . . , xP ): the total length of a graph
a (unit µm/s): a drift coefficient
σ (units µm2/s): a diffusion coefficient modulating
white noise ξ(t): with zero mean and autocorrelation
〈ξ(t)ξ(t′)〉 = δ(t− t′).

(b) t=30.4 s

II

I 1µm
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ER dynamics in treated condition
Parameter Estimation for Region I
Estimation of diffusion coefficient: via quadratic variation
〈X,X〉t := lim||P ||→0

∑n

k=1 |Xtk −Xtk−1
|2 where P ranges over

partitions of the interval [0, t] and the norm of the partition P is
the mesh.

σ ≈ 1

2Nd δ

N−1
∑

n=1

|x((n+ 1)δ)− x(nδ)|2 = 0.008µm2/s (2)
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Parameter Estimation for Region I
Estimation of diffusion coefficient: via quadratic variation
〈X,X〉t := lim||P ||→0

∑n

k=1 |Xtk −Xtk−1
|2 where P ranges over

partitions of the interval [0, t] and the norm of the partition P is
the mesh.

σ ≈ 1

2Nd δ

N−1
∑

n=1

|x((n+ 1)δ)− x(nδ)|2 = 0.008µm2/s (2)

Estimation of drif coefficient: via maximizing approximated log
likelihood function L(θ|x) = P (x|θ).

a ≈ −
∑N−1

n=1 〈∇f(x(n)), (x(n+ 1)− x(n))〉
∑N−1

n=1 δ|∇f(x(n))|2
= 0.2µm/s (3)
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ER dynamics in treated condition
Region I (experimental vs simulation results)
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ER dynamics in treated condition
Region II
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ER dynamics in treated condition
Region II (experimental vs simulation results)
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ER remodelling in the control
the dynamics of the control ER network is much richer

persistent node characterization
t=8 s

p1

1µm

t=32 s
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complex structural changes
 (a) t=6.4 s
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(b) t=8.0 s
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Physical quantities estimation
A number of assumptions:

A1 the ER filaments are approximately cylindrical with constant
radius R and surface tension γ; this means that the tension
force F := 2πRγ is approximately constant in the ER
filaments.

A2 the environment outside the ER filament is fluid with
constant effecitive viscosity η.

A3 the ER junction can be approximated as a sphere of radius R
that is acted on purely by Stokes drag, filament tension and
Brownian forces.
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Physical quantities estimation
For Region I, the non-persistent node x(t) ∈ R2 moves so that the
tension and Stokes drag forces balance the Brownian forces; hence
x satisfies the Langevin equation

F∇xf(x) + 6πηRẋ =
√

2kBT6πηRξ(t). (4)

This reduces to Eq (1) with a = F
6πηR

and σ = kBT

6πηR
. The ER

filament diameter D := 2R = 0.06µm (Shibata,Y et al 2009);
temperature T = 298K. This relations gives

η ≈ 909cP and F ≈ 0.1pN
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Physical quantities estimation
The cytoplasm displays both elastic and viscous characteristics
(Tseng, et al 2002)
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Physical quantities estimation
The cytoplasm displays both elastic and viscous characteristics
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This indicates that at this time scale, the cytoplasm behaves
predominantly elastic and the effective viscosity η = 909cP is an
overestimation of local cytoplasm viscosity.
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Thanks
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