
Multistability in input-driven recurrent neural networks

Andrea Ceni 1 Peter Ashwin 1 Lorenzo Livi 1,2 Claire Postlethwaite 3

1University of Exeter, UK

2University of Manitoba, Canada

3University of Auckland, New Zealand

December 12th, 2019 – Exeter, UK



Outline

1 Recurrent neural networks

2 Open the Black Box

3 Beyond autonomous systems: the Echo idea

4 Local Point Attractors and the Echo Index

5 Current research



Recurrent neural networks

Feedforward/Recurrent Neural Networks

Recurrent neural networks (RNNs) are dynamical systems inspired by the brain

Nonlinear (trainable) mapping from
the input space to the output space:

z[k] = F(u[k]) (1)

where F(·) =

g

(
Woφ

(
W2,3φ

(
W1,2φ

(
Win ·

))))
.

Nonautonomous (trainable)
dynamical system:

x[k] = G(x[k − 1], u[k]) (2)

where G(•, ∗) =

φ

(
W2,3φ

(
W1,2φ

(
Win ∗+Wr •

)))
.

This loop makes RNNs suitable to deal with temporal data.
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Recurrent neural networks

Reservoir computing machines

Let’s simplify: just 1 layer but very large (reservoir).

Figure 1: Representation of a RNN, with ψ(x) = Wox .

x[k] := φ(Wrx[k − 1] + Wiu[k] + Wfbz[k − 1]), (3)

z[k] := ψ(x[k]). (4)
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Recurrent neural networks

RNNs as input-driven system

Recurrent neural networks (RNNs) are nonautonomous nonlinear high-dimensional
discrete-time dynamical systems

x[k] := αφ( Wi︸︷︷︸
Nr×Ni

u[k] + Wr︸︷︷︸
Nr×Nr

x[k − 1] + Wfb︸︷︷︸
Nr×No

z[k − 1]) + (1− α)x[k − 1], Nr very large.

z[k] := ψ(x[k]).

ψ ∈ C1(X ,Y ), (it depends on the specific task to solve,

it reduces the effective dimensionality of the dynamics, Y ⊆ X )

φ ∈ C1(R, (−L, L)), monotonically increasing, φ′ has unique max point in 0. (sigmoid)

α ∈ (0, 1) tunes the time-scale of the RNN dynamics.

x[k] = G(u[k], x[k − 1]), x[k] ∈ X ⊂ RNr compact , u[k] ∈ U ⊂ RNi compact (5)
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Recurrent neural networks

Training a RNN

x[k] = G(u[k], x[k − 1]), G(u, x) := (1− α)x + αφ( Wr︸︷︷︸
Nr×Nr

x + Wfb︸︷︷︸
Nr×No

ψ(x) + Wi︸︷︷︸
Nr×Ni

u)

TRAINING = tune parameters (Wr ,Wfb,Wi , ψ, α) in order to minimise a Loss function.

clever definition of a loss function of the parameters;

clever choice of an optimisation algorithm.
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Open the Black Box

Opening the black box

Figure 2: Beer [3], Sussillo and Barak [6], Tiňo et al. [7]

Is it possible to provide a mechanistic model of the functioning of a trained RNN?

A. Ceni, P. Ashwin, and L. Livi. Interpreting recurrent neural networks behaviour via excitable network
attractors.
Cognitive Computation, pages 1–27, 2019.
doi: 10.1007/s12559-019-09634-2
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Open the Black Box

Excitable Network Attractors (ENAs)

Figure 3: Left: directed graph representing an excitable network attractor. Right: excitable network attractor
in phase space. See [1, 2, 8] for details.
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Open the Black Box

Extracting ENA from a RNN trajectory
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We showed that Excitable Network Attractors (ENAs) [1] can explain the functioning of RNNs
in some tasks that require switching between attractors:

useful to assess robustness to noise

ENA models can be exploited to provide a mechanistic interpretation of errors occurring
during the computation
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Open the Black Box

Flip-Flop task: Learning memory states

3D Input pulses —> 3D Output
square wave

The machine has to learn
whether to switch a bit or not
according to the current input
provided and its current state

8 / 22



Open the Black Box

Mechanistic interpretation of errors

12400 12600 12800 13000 13200 13400
Time

1

0

1
target output
generated output

12400 12600 12800 13000 13200 13400
Time

1

0

1
target output
generated output

Low overall mean squared error

What went wrong there? ENA
model can explain that
behaviour!

It learned 6 stable fixed points
instead of the 4 attractors
needed for the task

Note also an excessively low
excitability threshold (shown in
red)
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Open the Black Box

Going beyond autonomous dynamical systems ..

ENAs rely on autonomous dynamical systems theory: can handle only impulsive inputs. We
want to go further and deal with RNNs driven by any type of inputs. This requires using
concepts and notions from nonautonomous dynamical systems theory.

P. E. Kloeden and M. Rasmussen. Nonautonomous Dynamical Systems.
Number 176. American Mathematical Society, 2011
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Beyond autonomous systems: the Echo idea

The Echo State Property

Reservoir Computing paradigm: To function correctly some RNNs must possess the Echo State
Property (ESP)

Figure 4: The system should transform the input into a unique response.

This implies that, given an input, the RNN will produce a
unique response: it will “forget” any internal states and
end up following a unique (possibly complex) attracting
trajectory.

I. B. Yildiz, H. Jaeger, and S. J. Kiebel. Re-visiting the echo state property.
Neural Networks, 35:1–9, 2012.
doi: 10.1016/j.neunet.2012.07.005 11 / 22
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Beyond autonomous systems: the Echo idea

A generalisation of the ESP: multistable systems with inputs

Main Idea: to define the Echo Index n = I(u) of the system driven by input u. This number
quantifies the nonautonomous multistability under the action of the driving input
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Beyond autonomous systems: the Echo idea

Example of Echo Index n = 2

u[k] ≡ A ⇒ x[k] = G(A, x[k − 1]) ; u[k] ≡ B ⇒ x[k] = G(B, x[k − 1])

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

1.00
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0.25

0.00
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0 100 200 300 400 500
Time

0.4

0.2

0.0
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0.4

x 1

Local point attractor time series

Figure 5: Left: Under the same realisation of input (switching between input A and B with p1 = p2 = 0.5),
initial conditions converge to the upper local point attractor (left picture) or the bottom local point attractor
(center picture). Right: Basins of attraction of the two local point attractors at time step k = 0. Bottom:
Convergence of different initial conditions to one of the two local point attractors.
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Local Point Attractors and the Echo Index

Cocycle formalism

Input space values (U, dU) is a compact metric space.

⇓

Input signals space U := UZ = {u = {u[k]}k∈Z : u[k] ∈ U, ∀k ∈ Z} is a compact metric space

with dU (u, v) :=
∑

k∈Z
dU(u[k], v [k])

2|k|
.

Definition

The input-driven dynamics of (5) is described through the cocycle mapping
Φ : Z+

0 × U × X −→ X as follows:

Φ(0, u, x0) := x0, ∀x0 ∈ X, ∀u ∈ U , (6)

Φ(n, u, x0) := G(u[n],Φ(n − 1, u, x0)), ∀x0 ∈ X, ∀u ∈ U , ∀n ≥ 1. (7)
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Local Point Attractors and the Echo Index

Local point attractor (nonautonomous fixed point)

Definition

Fix an input sequence u ∈ U . We call a solution {x[k]}k∈Z of the system (5) driven by input u a
local point attractor if there exists a u-positively invariant* nonautonomous set {B[k]}k∈Z made
by compact sets such that

(i) λ(B[k]) > 0 for all k ∈ Z; and

(ii) For all sequences {jk}k∈N of integers we have

lim
k→∞

h(Φ(k, σjk (u),B[jk ]), x[jk + k]) = 0.

If a u-positively invariant nonautonomous set {B[k]}k∈Z made by compact sets satisfies (i)-(ii)
we say it is uniformly attracted by the local point attractor {x[k]}k∈Z.

Note that h denotes the Hausdorff semi-distance on X, hence the limit above expresses a
uniform (in space) convergence towards the local point attractor, because
h(Φ(k, σjk (v),B[jk ]), x[jk + k]) = supz∈B[jk ] dX(Φ(k, σjk (v), z), x[jk + k]).

*See the additional slide 22.
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Local Point Attractors and the Echo Index

Definition of echo index

Definition

We say the system (5) driven by input u ∈ U has echo index n if there exist a number n of local
point attractors {x1[k]}k∈Z, . . . , {xn[k]}k∈Z such that for all η > 0 there are nonautonomous
sets {Bη1 [k]}k∈Z, . . . , {Bηn [k]}k∈Z uniformly attracted by, respectively,
{x1[k]}k∈Z, . . . , {xn[k]}k∈Z whose union at each time step get arbitrarily close to the full
measure of the whole space, i.e.

λ(X \
n⋃

i=1

Bηi [k]) < η, ∀k ∈ Z. (8)
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Local Point Attractors and the Echo Index

Existence of Local Point Attractors

The following theorem outlines a strategy for detecting local point attractors.

Theorem

Let be given an input sequence v ∈ U . Suppose {Qn}n∈Z is a positively invariant
nonautonomous set for input v made by nonempty compact sets. Suppose there exists a
sequence of positive real numbers {µk}k∈N, with limk→∞ µk = 0, such that

∀n0 ∈ Z, ∀x0, y0 ∈ Qn0 , ∀k > 0, dX (Φ(k, σn0 (v), x0),Φ(k, σn0 (v), y0)) ≤ µkdX (x0, y0).
(9)

Then, there exists a unique bi-infinite solution for input v inside {Qn}n∈Z. In addition, if
λ(Qs) > 0, for some s ∈ Z, then such bi-infinite solution is a local point attractor.

A simplified strategy is the following.

Theorem

Let µ be a positive real such that µ < 1. Suppose Qµ be a U-positively invariant nonempty
compact set such that it is contained inside C(µ) := {x ∈ X : supu∈U ||DxG(u, x)|| ≤ µ}, and
suppose further that Qµ is convex. Then, for all v ∈ U the system (5) driven by the input
sequence v admits a unique bi-infinite solution inside Qµ. In addition, if λ(Qµ) > 0 then there is
a unique local point attractor in Qµ. Moreover, the convergence towards the local point
attractor is ruled by µk = µk , k ∈ N, i.e. strictly monotonic and linear.
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Local Point Attractors and the Echo Index

Existence of Echo Index n for small-amplitude input perturbations

Definition

Let be given a (autonomous) map F : X −→ X and a fixed point x∗ ∈ X for the map F , i.e.
F (x∗) = x∗. We call x∗ a Uniformly Attracting Stable Point (UASP) if there is an 0 < M < 1
and δ > 0, such that

dX(F (z), x∗) < MdX(z, x∗), ∀z ∈ Bδ(x∗). (10)

Theorem

Suppose there is an input value ū ∈ Ri , such that the corresponding autonomous map
F (x) := G(ū, x) induced by the constant input value ū possesses a UASP x∗.
Then, it is possible to find an r > 0 such that, for any input signal v ∈ Br (ū)Z there exists a
unique local point attractor confined in a neighbourhood of x∗.
Furthermore, the convergence towards the local point attractor is strictly monotonic and linear.

This result implies that:

Slightly perturbing an autonomous system possessing n UASPs will lead to a
nonautonomous system where n local point attractors coexist.

Generally, ESP cannot hold for small-amplitude input signals.
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Local Point Attractors and the Echo Index

Large-amplitude inputs induce RNNs with echo index 1

G(u, x) := (1− α)x + αφ( Wr︸︷︷︸
Nr×Nr

x + Wfb︸︷︷︸
Nr×No

ψ(x) + Wi︸︷︷︸
Nr×Ni

u)

ψ ∈ C1(X )

φ ∈ C1(R, (−L, L)), monotonically increasing, φ′ has unique max point in 0. (sigmoid)

x[k] = G(u[k], x[k − 1]), x[k] ∈ X ⊂ RNr compact , u[k] ∈ U ⊂ RNi compact

Theorem

For all ε > 0, yielding the closed set Pε := RNi \
⋃Nr

j=1 Bε(Hj ), where

Hj := {u ∈ RNi : (Win)(j) · u = 0}, there exists a Rε > 0 such that for all compact sets K

containing BRε (0) and for all input sequences u ∈
(
K \

(
Pε ∪ BRε (0)

))Z
there exists a unique

local point attractor for the RNN (3) driven by u.
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Current research

Research directions

To exploit the generalised ESP in:

Classification tasks

Counting problems

Diagnostic of errors

To devise algorithms to compute local point attractors and related properties from data
(reverse engineer RNNs driven by non trivial inputs)

Nonautonomous (i.e. time-dependent) excitable network attractors

To look at the results of different training mechanisms for RNNs on the number, type,
and properties of attractors in the underlying autonomous dynamics and how these affect
the behaviour of the nonautonomous system
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Technical details

Positively invariant sets

Consider a nonautonomous system defined by a cocycle mapping Φ : Z+
0 × U × X −→ X as in

Definition 1, and let us fix an input sequence u ∈ U .

Definition

A family of nonempty compact sets B = {Bn}n∈Z is called a positively invariant nonautonomous
set for input u (or simply u-positively invariant) if

Φ(s, σm(u),Bm) ⊆ Bs+m.

for all m ∈ Z and s ∈ Z+
0 .

Definition

A nonempty compact subset B ⊆ X is called positively invariant for a family of input sequences
V ⊆ U (or V-positively invariant) if for all k ∈ Z+

0 it holds that

Φ(k, u,B) ⊆ B, ∀u ∈ V.
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Technical details

Boundary solutions

All the initial conditions taken on the basin boundary converge to an unstable local point
attractor representing a sort of nonautonomous saddle.
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Figure 6: Left: initial condition is (0.49,−0.066761137519131756). The trajectory takes 354 steps before to
cross the stable manifold of the left saddle. Center: initial condition is (0.49,−0.066761137519131757).
Right: 100 initial conditions have been chosen around the separatrix. At each time step has been computed
and plotted the distance between a (randomly chosen) reference trajectory and all the other trajectories.
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