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A ‘normal’ EEG
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EEG recording of a generalised seizure
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Epilepsy - A Network Problem!
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Ubiquitousness of the Kuramoto Model

NEUROINFORMATICS

discriminating between frequency and phase-locked activity (Baker 
et al., 1999; Mima and Hallett, 1999; Salinas and Sejnowski, 2001; 
Fries, 2005; Womelsdorf et al., 2007). It is usually assumed that 
amplitude or power variations take place on long time scales when 
compared to the phase dynamics and are therefore considered neg-
ligible. The coupling that does, or does not, yield synchrony between 
oscillators hence exclusively depends on the phase. Here we ask 
whether this assumption is valid, and by this, tackle if a sole focus 
on phase really covers all functional characteristics of networks. In 
the present study we describe the dynamics of neural populations 
at every node as a neural mass model (Wilson and Cowan, 1972; 
Lopes Da Silva et al., 1974, 1976; Freeman, 1975; Lopes Da Silva, 
1991; Jansen and Rit, 1995; Deco et al., 2008) that can behave like 
weakly coupled self-sustained non-linear oscillators. This descrip-
tion generally allows for deducing the corresponding phase dynam-
ics (Schuster and Wagner, 1990a,b; Aoyagi, 1995; Tass, 1999) and, 
by this, to investigate how amplitude affects the phase dynamics 
in neural networks. The phase dynamics is indeed influenced by 
the amplitudes of the individual oscillators as we show analytically.

In a nutshell, we start off with a network of N Wilson–Cowan 
neural mass models (Wilson and Cowan, 1972) that are each located at 
network nodes k = 1, 2, …, N and linked solely through excitatory con-
nections. Every model displays self-sustained oscillations with slightly 
different natural frequencies. Given a certain structural connectivity 
between the oscillators denoted by Ckl

, we discuss how the connec-
tivity D

kl
 between phases explicitly depends on the oscillators ampli-

tudes R
k
. The expression D

kl
∝(R

l
/R

k
)C

kl
 can be derived  analytically 

INTRODUCTION
The interplay between structural and functional brain networks has 
become a popular topic of research in recent years. It is currently 
believed that the topologies of structural and functional networks in 
various empirical systems may disagree (Sporns and Kötter, 2004) 
but systematic analyses tackling this issue are few and far between. 
In a combined neural mass and graph theoretical model of electro-
encephalographic signals, it was found that patterns of functional 
connectivity are influenced by – but not identical to – those of 
the corresponding structural level (Ponten et al., 2010). In this 
and many other studies, functional connectivity has been defined 
through the synchronization between activities at different nodes.

Neurons synchronize their firing pattern in accordance with 
different behavioral states. On a larger scale, synchronous activi-
ties are considered to stem from meso-scale neural populations 
that oscillate at certain frequencies with certain amplitudes. That 
is, oscillatory activity may yield synchronization characteristics 
within a neural population or between populations (Salenius and 
Hari, 2003). The amplitude of a single oscillatory neural popula-
tion reflects the degree of synchronization of its neurons, that is, 
it measures local synchrony. By contrast, synchronization between 
two or more oscillatory neural populations is typically defined by 
their (relative) phase variance. Changes in instantaneous phase 
locking or coherence reflect changes in more global, distributed 
synchronization, i.e., between ensembles or between areas. In fact, 
synchronized activity across neural networks is believed to offer 
an effective mechanism for information transfer, especially when 
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by  characterizing every oscillator via its amplitude and phase and 
formulating for the latter the dynamics in terms of a Kuramoto net-
work (Kuramoto, 1984; Strogatz, 2000; Acebron et al., 2005).

The discussed structural connectivities differ qualitatively in 
their topology. In detail, we consider the fully connected isotropic 
network, a network with small-world topology generated by the 
Watts–Strogatz model (Watts and Strogatz, 1998), and an anatomi-
cal network reported by Hagmann et al. (2008). Capitalizing on 
the derived analytical expression for D

kl
, we show how the ampli-

tude dependency can alter the topology of connectivity in the 
network of Wilson–Cowan oscillators when reducing them to the 
Kuramoto-like network of mere phase oscillators. The connectivity 
at the level of phase dynamics, D

kl
, largely prescribes the func-

tional connectivity as quantified by the resulting synchronization 
patters. We illustrate this numerically using the aforementioned 
network topologies that are known to influence synchronizability 
(Watts and Strogatz, 1998; Barahona and Pecora, 2002; Achard and 
Bullmore, 2007; Brede, 2008).

MATERIALS AND METHODS
NETWORK MODELS
To understand the qualitative relationship between macroscopically 
defined functional networks and the (underlying) structural con-
nectivity, modeling local populations of neurons in terms of aver-
aged properties like their mean voltage and/or firing rates appears 
very efficient. This mean-field-like approach has a long tradition 
and is typically referred to as neural mass modeling (Wilson and 
Cowan, 1972; Lopes Da Silva et al., 1974, 1976; Freeman, 1975; 
Lopes Da Silva, 1991; Jansen and Rit, 1995; Deco et al., 2008). Neural 
mass models have been used to study the origin of alpha rhythm, 
evoked potentials, pathological brain rhythms, and the transition 
between normal and epileptic activity (Lopes Da Silva et al., 1974; 
Jansen and Rit, 1995; Stam et al., 1999a,b; Valdes et al., 1999; David 
et al., 2005). Several studies considered small networks of two or 
three interconnected neural mass models (Van Rotterdam et al., 
1982; Schuster and Wagner, 1990a,b; Wendling et al., 2001; David 
and Friston, 2003; Ursino et al., 2007) as well as larger networks 
of interconnected models (Sotero et al., 2007; Ponten et al., 2010).

Here we chose for Wilson–Cowan as seminal neural mass model 
because it can readily be derived from microscopic descriptions 
like integrate-and-fire neurons, but also from more general models 
like Haken (2002) pulse-coupled neurons. By the same token, the 
Wilson–Cowan model provides a comprehensive link toward an 
even more macroscopic description as its continuum limit resembles 
by now well-established neural field equations (Jirsa and Haken, 
1996). That is, Wilson–Cowan units may be viewed as an interme-
diate but in some sense generic description of densely connected 
neural populations.

Network of Wilson–Cowan models
As said, we are going to put individual Wilson–Cowan models at 
every node k of the network under study. Every model contains 
distinct populations of excitatory and inhibitory neurons that are 
described by their firing rates. If e

n
 denotes the firing rate of an 

excitatory neuron and i
n
 the firing rate of an inhibitory neuron, 

then a neural mass description can be obtained by averaging over 
the neural population in terms of E eN n

N
ne

e= ∑ =
1

1  and, I iN n
N

ni

i= ∑ =
1

1  

where N
e
 and N

i
 are the numbers of excitatory and inhibitory neu-

rons. By this averaging, E and I represent the mean firing rates of 
all excitatory and inhibitory neurons, respectively, of the neural 
population in question, i.e., that at node k.

Within that population, every neuron receives input from all 
other neurons of the population. Furthermore, the excitatory units 
individually receive constant external inputs p

n
, whose average is 

given by P pN n
N

ne

e= ∑ =
1

1 . The sum of all inputs is (instantaneously) 
integrated in time when it exceeds some threshold u. This thresh-
olding is realized by means of a sigmoid function S. Without loss of 
generality we here chose S[x] = (1 + e−x)−1; we note that, in general, 
the thresholds may differ between excitatory and inhibitory units1. 
In consequence, the mean firing rates of the neural populations can 
be cast in the following dynamical system

d

dt
E E S a c E c I P

d

dt
I I S a c E c I

E EE IE E

I EI II I

= − + − − +( ) 

= − + − −( )

u

u 

The characteristics of this dynamical system range from a mere 
fixed-point relaxation to limit cycle oscillations (self-sustained 
oscillations) depending on parameter settings (Wilson and Cowan, 
1972), in particular on the choice of the external input P. That input 
is usually chosen at random. In the current study, we restrict all 
parameter values to the regime within which the dynamics displays 
self-sustained oscillations; see Appendix.

To combine Wilson–Cowan models in a network, different pop-
ulations are now connected via their excitatory units by virtue of 
the sum of all E

l
 in the dynamics of E

k
 (see Figure 1). The dynamics 

at node k then becomes

d

dt
E E S a c E c I P

N
C E

d

dt

k k E k k E k kl l
l

N

= + − + +















=
∑− −EE IE u
h

1

II I S a c E c Ik k I EI k II k I= − + − −( ) u  (1)

In words, all Wilson–Cowan oscillators, located at nodes l in the 
network drive the change of the firing rate of the excitatory units 
E

k
. The connectivity is given by the real-valued matrix C

kl
 that has 

vanishing diagonal elements, i.e., C
kk

 = 0. That connectivity matrix 
is scaled via the overall coupling strength h. It is important to note 
that the C

kl
 connectivity matrix is here always identified as the 

structural connectivity.
As the different Wilson–Cowan models display self-sustained 

oscillations, it seems obvious to describe them using their ampli-
tude and phase dynamics. The required transforms and approxima-
tions are summarized in the Appendix and the outcomes reveal a 
phase dynamics similar to the seminal Kuramoto network of phase 

1At the individual neuron level, the dynamics reads:

d

dt
e e S a u e v i p

d

n n e N mn mm

N

N mn m n
e

m

N

ne

e

i

i= − + − − +( )



= =∑ ∑1

1
1

1
u

ddt
i i S a w e z in n i N mn mm

N

N mn m n
i

m

N

e

e

i

i= − + − −( )



= =∑ ∑1

1
1

1
u

where u, v, w, and z are positive constants representing coupling matrices within 
the local neural population – see, e.g., Schuster and Wagner (1990a,b) for details.
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=⇒

d

dt Nk k
l

N

l kw v
h

w w= + −( )
=
∑sin

1

For the sake of legibility, however, we here refer to (2) also as 
the Kuramoto model.

As mentioned above, the effect of increasing h in the isotropic 
case is to increase the phase synchrony amongst the oscillators. 
Suppose the coupling is weak (i.e., smaller than the critical value, 
or h � h

c
, then the oscillators’ phases disperse, whereas for strong 

coupling h � h
c
 the oscillators become synchronous, i.e., the phases 

are locked at fixed differences. In the intermediate case h ≈ h
c
 , clus-

ters of synchronous oscillators may emerge. However, many other 
oscillators, whose natural frequencies are at the tails of the distribu-
tion, are not locked into a cluster. In other words, as h increases, the 
interaction functions overcome the dispersion of natural frequencies 
v

n
 resulting in a transition from incoherence, to partial and then 

full synchronization (Acebron et al., 2005; Breakspear et al., 2010).

Linking neural mass models to phase oscillators
When deriving the Kuramoto network from the Wilson–Cowan oscil-
lator network, the major ingredient is to average every oscillator over 
one cycle when assuming that its amplitude and phase change slowly 
as compared to the oscillator’s frequency. That is, time-dependent 
amplitude and phase are fixed, the system is integrated over one period 
to remove all harmonic oscillations, and, subsequently, amplitude and 
phase are again considered to be time-dependent (Guckenheimer and 
Holmes, 1990) – this procedure is also referred to as a combination of 
rotating wave approximation and slowly varying amplitude approxi-
mation (Haken, 1974). As shown in more detail in the Appendix, the 
phase dynamics of the system (1) can in this way be approximated as

d

dt N
C a S

R

R

N
C a

k k kl E
l

N

E k
l

k
l kw v

h
x w w

h

= +   −( )

+

=

( )∑2

16

1

0′ , sin

kl EE
l

N

E k k l l kS R R c c

c c

3

1

0 2 23

2

=

( )∑   +( )( −( )
+

″′ x w w, sin

c

EE IE

EE IE oos w wl k−( ))
with S′ and S′′′ referring to the first and third derivative of the 
sigmoid function S. The parameter xE k,

( )0
 is given by

x u
h

E k E k k E k l
l

N

a c E c I P
N

C E,
0 0 0 0

1

( ) ( ) ( ) ( )

=
= − − + +



∑EE IE kl

with ( , )( ) ( )E Ik k
0 0  defining the unstable node within the limit cycle of 

the Wilson–Cowan model (1) and at network node k. For more 
details including the definition of the natural frequency we refer 
to the Appendix. Considering the case that the amplitudes R

k
 are 

reasonably small, this phase dynamics can be further simplified to

d

dt N
a S

R

R
Ck k E E k

l

N
l

k
kl l kw v

h
x w w≈ +   −( )( )

=
∑2

0

1

′ , sin

which does resemble a Kuramoto network. In fact, by comparing 
this form with the dynamics (2) we find

D a S
R

R
Ckl E E k

l

k
kl=  

( )1

2
0′ x ,

 
(3)

oscillators. The Kuramoto model and its link to the here-discussed 
network of Wilson–Cowan models will be briefly sketched in the 
following two sub-sections.

Kuramoto network of phase oscillators
The collective behavior of a network of oscillators, whose states are 
captured by a single scalar phase w

k
 each, can, in first approximation, 

be represented by the set of N coupled differential Eq.

d

dt N
Dk k

i

N

l kw v
h

w w= + −( )
=
∑ kl sin

1  
(2)

That is, the k-th oscillator, with natural frequency v
k
, adjusts its 

phase according to input from other oscillators through a pair-wise 
phase interaction function sin(w

l
 – w

k
). The connectivity matrix 

D
kl
 is again scaled by an overall coupling strength, h. As will be 

sketched below, h serves as a bifurcation parameter in that small 
values of h yield a network behavior that essentially agrees with 
the entirely uncoupled case (i.e., the phases are not synchronized), 
whereas h larger than a certain critical value h

c
 causes the phases 

to synchronize. The frequencies v
k
 are distributed according to 

a specified probability density usually taken to be a symmetric, 
unimodal distribution (e.g., Lorentzian or Gaussian distributions) 
with mean v

0
. Although the sinusoidal interaction function is an 

approximation, it still permits a variety of highly non-trivial solu-
tions. As such the model (2) can be viewed as the canonical form 
for synchronization in extended, oscillatory media. We note that 
the connectivity matrix D

kl
 represents also a structural connectiv-

ity that does not necessarily agree with that of the Wilson–Cowan 
model – see below.

Strictly speaking the system (2) does not represent the Kuramoto 
model in its original form as there the coupling between nodes k 
and l was considered isotropic and homogeneous, i.e., D

kl
 = 1 for 

all connections, by which the model reduces to

cEI

cEE

CkI EI

cIE

cII

Ik

Pk
Ek

FIGURE 1 | Network of Wilson–Cowan models. At each node k a neural 
population containing excitatory and inhibitory units (Ek and Ik, respectively) 
yields self-sustained oscillations. Other nodes are connected to the excitatory 
unit by means of ΣCklEl. Note that this (mean-field) coupling is scaled by a 
scalar h – see Eq. 1 for details.
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The Kuramoto Model

The model:

θ̇j = ωj +
K

N

N∑
n=1

sin(θn − θj), j = {1, . . . ,N}

The order parameter r defines the degree of ‘synchronicity’:

reiψ =
1

N

N∑
n=1

eiθn =⇒ θ̇j = ωj + rK sin(ψ − θj),

Thermodynamic limit (N →∞), g(ω) = 1√
π

e−(Ω−ω)2

:

r =
√
π
rK

2
e−(rK)2/2

(
I0

(
(rK )2

2

)
+ I1

(
(rK )2

2

))
= F (rK )
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The Kuramoto Model

Synchronisation sets in at critical coupling strength Kc :
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The Kuramoto model
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Directed Networks of ‘Kuramoto Populations’:
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Directed Networks of ‘Kuramoto Populations’:

The full model with adjacency matrix Â:

θ̇pj = ωp
j +

Kp

N

N∑
n=1

sin(θpn − θ
p
j ) +

P∑
s=1

As,p

N

N∑
n=1

sin(θsn − θ
p
j ),

define local order parameters:

rpeiψp =
1

N

N∑
n=1

eiθpn ,

=⇒

θ̇pj = ωp
j + rpKp sin(ψp − θpj ) +

P∑
s=1

rsAs,p sin(ψs − θpj ).
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Directed Networks of ‘Kuramoto Populations’:

under the assumption that ψp = ψs ∀ p, s we obtain

rp = F

(
Kprp +

P∑
s=1

As,prs

)
, p = {1, . . . ,P}.

linearisation about (r1, . . . , rP) = (0, . . . , 0) yields(
Kp

Kc
− 1

)
rp +

1

Kc

P∑
m=1

As,prs = 0.

nontrivial solutions exist if

det

(
Â

Kc
+ K̂

)
= 0, Kp,p =

Kp

Kc
− 1, Ks,p = 0 if s 6= p
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Directed Networks of ‘Kuramoto Populations’:

rewriting Â = C ρ̂ yields a critical value for the global coupling
parameter C :

det

(
Cc

Kc
ρ̂+ K̂

)
= 0.

if ρ̂ is triangular,

det

(
Cc

Kc
ρ̂+ K̂

)
= det

(
K̂
)
6= 0
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a loop of 3 populations plus one extra connection

  









Basic Observations
The Kuramoto Model and Neuroscience

Networks of Networks of PCO
Directed Networks from EEG

a loop of 3 populations plus one extra connection

  









r1 = F (r1K + r2C + r3C )

r2 = F (r2K + r1C )

r3 = F (r3K + r2C )
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a hierarchical network of 3:
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r1 = F (r1K + r2C + r3C )

r2 = F (r2K )

r3 = F (r3K + r2C )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

C

r
K = 0.8

Helmut Schmidt The Kuramoto Model and Epilepsy

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

C

r K = 0.8

Helmut Schmidt Network-driven synchronisation of phase-coupled oscillators



Motivation
The ‘Classical’ Kuramoto Model

Networks of Kuramoto Models
Application to EEG Data

Larger Networks
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Directed Networks from EEG Data

To compute (delayed) cross-correlation between time-series xi and
xj we follow Bialonski & Lehnertz (2013):

ρi,j = max
τ

{∣∣∣∣∣ ξ(xi , xj)(τ)√
ξ(xi , xi )(0)ξ(xj , xj)(0)

∣∣∣∣∣
}
,

with

ξ(xi , xj)(τ) =

{∑T−τ
t=1 xi (t + τ)xj(t) if τ ≥ 0∑T
t=1+τ xi (t + τ)xj(t) if τ < 0

.
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