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Purpose

The purpose of this talk is not just to explain some of what I’ve
been thinking about with Pete, but also to get some feedback
and learn.
→ I have pretty much no experience with smooth ergodic

theory.

I will probably be “asking” at least as many questions as I
“answer”.
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Motivation

Deterministic model of a climate system “without climate
change”:

autonomous DE ẋ = F (x) on some state space M, . . .
autonomous since climate parameters are not changing;
but there may be different regions of M corresponding to
“qualitatively different” climate scenarios, so:

. . . with some given “attractor” A ⊂ M representing a stable
qualitative state of the climate system.

E.g. AMOC could be described by an ODE ẋ = F (x) with an
attractor Aon corresponding to the “on” state of the AMOC
(while there is another attractor Aoff corresponding to a
qualitatively different stable state of the AMOC, the “off” state).
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Motivation

Without “climate change”, the quantitative state of the climate is
always changing!
⇒ the attractor A is not a single point.

Leads to the question:

“If I observe this deterministic climate system at some
‘random’ time t that has nothing to do with the state of
the climate itself, what is the probability distribution for
the current quantitative state x(t) of the climate?”

Note:
This would be a probability distribution supported on A.
If A is “chaotic”, then the answer is unaffected by
observations made a sufficiently long time ago.
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Problems:
When is there a well-defined answer µ to this question?
In what ways can µ be numerically simulated?
Introduce climate change:

ẋ(t) = Fλ(t)(x(t)), lim
t→−∞

Fλ(t) = F

→ evolve A forward from time −∞ to get a set-valued
trajectory A(t) equipped at each time t with the
corresponding probability distribution µ(t);

→ but this doesn’t mean anything—how do we give this
rigorous meaning and simulate it?

→ if this system exhibits “partial tipping” then we use µ(t) to
define the probability of tipping [Ashwin & N., submitted]

Although the goal is this “climate-changing” case, we’re still
trying to understand aspects of the autonomous case.
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Axiom A attractors

M – compact Riemannian manifold
m – Lebesgue measure
(f t)t∈R – solution flow for an autonomous ODE on M

An Axiom A attractor A ⊂ M is a chaotic attractor with very nice
“hyperbolicity” properties.

[Bowen & Ruelle, 1975]1 Under weak conditions, given an
Axiom A attractor A with “basin of attraction”

BA := {x0 ∈ M : d(f tx0,A)→ 0 as t →∞},

A is the support of an ergodic invariant probability measure µA
with the following two properties:

1Analogous result for discrete-time maps in [Ruelle, 1976].
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1 [BR75, Thm. 5.1] For m-a.e. x0 ∈ BA,

1
t

∫ t

0
δf sx0 ds

weakly→ µA as t →∞.

→ LHS = law of x(T ) for T ∼ Unif(0, t), given x(0) = x0.

Property 1 is analogous to ergodicity: a prob. meas. µ is
ergodic iff for µ-a.e. x0 ∈ M,

1
t

∫ t

0
δf sx0 ds

weakly→ µ.

Heuristic meaning of “m-a.e.”: your i.c. has to be “infinitely
unlucky” to be a counterexample.
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2 [BR75, Thm. 5.3] For every p.m. ν0 � m with ν0(BA) = 1,

f tν0
weakly→ µA as t →∞.

→ LHS = law of x(t) for x(0) ∼ ν0.

Property 2 is analogous to mixing: a p.m. µ is mixing iff ∀p.m.
ν0 � µ,

f tν0
weakly→

(or strongly)
µ.

(Remark. mixing⇒ ergodic.)

Heuristic meaning of “ν0 � m”: the initial distribution ν0
respects the notion of an “infinitely unlucky” result for x(0).
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Axiom A attractors

The analogy between Property 2 and mixing can be understood
in terms of decay of “classical correlations” vs. decay of
“operational correlations” (e.g. [Baladi et al., 2002]):

An invariant p.m. µ is mixing iff ∀g1,g2 ∈ Cb(M,R),

Covµ[g1,g2◦f t ] =

∫
g1(x)g2(f tx)µ(dx)−

∫
g1 dµ

∫
g2 dµ → 0.

Property 2 can be re-expressed as: ∀g1,g2 ∈ Cb(BA,R),

OC(g1,g2, t) :=
∫

BA

g1(x)g2(f tx)m(dx)−
∫

BA

g1 dm
∫

g2 dµA → 0.
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Axiom A attractors

Note: in [BR75], µA is constructed in Sec. 3; then Thms. 5.1
and 5.3 are separately proved based on material developed
prior to Sec. 5.

Remark:
Pr. 1 holds in the general setting of [BR75].
Pr. 2 holds under mild extra assumption: the unstable
manifold of each point in A is dense in A.

→ Extra assumption only enters via the fact that
it implies µA is mixing.

So [BR75, Thm. 5.3] “really” says: µA mixing ⇒ µA has Pr. 2.
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“Attracting measures”

Property 1: “physical measures”
→ extensively studied in more general settings

Property 2: ???
→ I will call such measures attracting measures
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“Attracting measures”

When A is a Lebesgue null set:
mixing—purely in and of itself—may not be of much
physical relevance;
“attracting” is probably the more physically accessible
notion of mixing dynamics [Baladi et al., 2002];
and yet it seems that attracting measures are
under-appreciated and/or under-studied!

E.g. the Lorenz system
has a chaotic attractor A supporting a physical measure µA
[Tucker, 2002];
µA is mixing at an exponential rate [Araújo & Melbourne,
2016];
but is it known whether µA is attracting??
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What I will do in this talk

I will
present definitions of attractors, physical measures and
attracting measures in a generalised setting;
present a generalisation of [BR75, Thm. 5.3];
raise several questions along the way and at the end.
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My generalised setting

M – Riemannian manifold
m – Lebesgue measure
d – geodesic distance
(f t)t≥0 – continuous semiflow of C1 local diffeomorphisms

Actually, I can make it even more general (purely topological):

M – Polish space
m – locally finite measure of full support
d – metrisation of the topology of M
(f t)t≥0 – continuous semiflow of open mappings f t : M → M
admitting a well-defined transfer operator w.r.t. m that locally
respects boundedness.
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Physical and attracting measures

A p.m. µ whose support A is compact is called a(n)
physical measure if ∃nbhd U ⊃ A s.t. for m-a.e. x0 ∈ U,

1
t

∫ t

0
δf sx0 ds

weakly→ µ;

attracting measure if ∃nbhd U ⊃ A s.t. for each p.m.
ν0 � m with ν0(U) = 1,

f tν0
weakly→ µ.

I will generalise the proof of [BR75, Thm. 5.3] to obtain general
conditions under which mixing implies attracting.
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Attractors
A compact set A ⊂ M with f tA = A for all t ≥ 0 is called a

pointwise attractor if ∃nbhd U s.t.

d( f tx0 , A ) → 0 for each x0 ∈ U;

uniform attractor if ∃nbhd U s.t.

d( f tx0 , A ) → 0 uniformly across x0 ∈ U;

pointwise attractor via stable manifolds if ∃nbhd U and
π : U → A [w.l.o.g. Lebesgue-measurable] s.t.

d( f tx0 , f tπ(x0) ) → 0 for each x0 ∈ U;

uniform attractor via shadowing if ∃nbhd U s.t. ∀ ε > 0,
∃πε : U → A s.t. for suff. large t ,

sup
x0∈U

d( f tx0 , f tπε(x0) ) < ε.
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Axiom A case

An Axiom A attractor is both a pointwise via stable manifolds
and uniformly via shadowing [BR75, Prop. 4.4].

Questions:
1 What about “uniform via stable manifolds”?

− i.e. does there exist nbhd U and π : U → A s.t.

d( f tx0 , f tπ(x0) ) → 0 uniformly across x0 ∈ U?

2 Can π (in def’n of pointwise via stable manifolds) be
chosen s.t. π(m|U)� µA?
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A trivial result

Proposition
Suppose we have p.m. µ whose support A is a pointwise
attractor via stable manifolds.

Suppose (U, π) be chosen s.t. π(m|U)� µ.

If µ is mixing then µ is attracting.

Using our further-above characterisation of mixing, the proof is
a trivial application of the dominated convergence theorem.

But I suspect that this result is useless (i.e. conditions typically
don’t hold or are very difficult to verify)??
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A maybe more useful result

Theorem (generalising [BR75, Thm. 5.3])

Suppose we have p.m. µ whose support A is a uniform attractor
via shadowing.

Suppose µ is mixing. Suppose µ also satisfies (∗):
∃arbit’ly small ε > 0 s.t. one can find an unbounded set

T ⊂ [0,∞) with

inf
T∈T ,x∈A

µ
(
y ∈ A : d(f tx , f ty) < ε ∀ t ∈ [0,T ]

)
m(y ∈ M : d(f tx , f ty) < 3ε ∀ t ∈ [0,T ])

> 0.

Then µ is attracting.

[BR75] uses 2ε in place of 3ε (and verifies (∗) in Cor. 4.6), but
the proof doesn’t seem to work with 2ε.
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Some further questions

Can we find settings outside of the Axiom A setting in
which the Theorem can be applied?
Can the conditions of the Theorem be weakened/modified
so as to be more easily applicable beyond the Axiom A
setting?
In particular, might it be the case generally that every
mixing physical measure is attracting?
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Some further questions

It is known that if a probability measure µ is an SRB
measure in the sense of [Young, 2002], then it is “physical”
under a weaker definition where the neighbourhood U may
now be any m-positive-measure set [Pugh & Shub, 1989].

↪→ If a probability measure µ is an SRB measure in the sense
of [Young, 2002] and is also mixing, does it follow that µ is
an “attracting measure”, at least under a weaker definition
where the neighbourhood U may now be any
m-positive-measure set?
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Thank you.


