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What is the place of Analytical 
Models? 

Experimental 
data  

Realistic 
models  

Analytical 
(Metaphorical) 
models 



Class models Z to the even power 

𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝐴0 𝑍 + 𝜀 𝑡  

𝑍 = 𝑥 + 𝑖𝑦 

𝑎𝑛, 𝑎𝑛−1, … 𝑎2, 𝑎1  

𝐴0 = 𝑐 + 𝑖𝜔 

is complex variable! 

are real constant coefficients! 

is a constant complex 
coefficient! 

𝜀(𝑡) 

is the complex input to the 
system, eventually including 
white noise components! 



What we could do analytically? 
Some remarks and ideas. 

𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝐴0 𝑍 + 𝜀 𝑡  

 𝑍 → 𝑒𝑖𝜑𝑍 

Our equation is invariant 
under constant phase 
rotations ! 

To analyze the stationary 
behavior of the solutions of 
the equation, one may  
ignore the input 𝜀 𝑡 ! 

From our equation we can 
derive two equations 
describing the time 
evolution of the radial and 
angular components! 

Writing our equation without 𝜀 𝑡  
for variable 𝑍,  and the conjugate 
equation, we are receiving two 
equations: 



What we could do analytically? 

𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝐴0 𝑍 + 𝜀 𝑡  

𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 + 𝑖𝜔 𝑍 

𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 − 𝑖𝜔 𝑍 

𝑍
𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 + 𝑖𝜔 𝑍𝑍 

𝑍
𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 − 𝑖𝜔 𝑍𝑍 



What we could do analytically? 
Real part 

𝑍
𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 + 𝑖𝜔 𝑍𝑍 

𝑍
𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 − 𝑖𝜔 𝑍𝑍 

𝑍 𝑡 ≡ 𝜌 𝑡 𝑒𝑖𝜑 𝑡 ; 𝜌 ≡ 𝑍 2 ≡ 𝑍𝑍 

Real part: 

𝑍
𝑑

𝑑𝑡
𝑍 + 𝑍

𝑑

𝑑𝑡
𝑍 = 2 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 𝑍𝑍 

𝑑

𝑑𝑡
𝜌 = 2𝜌 𝑎𝑛𝜌

𝑛 + 𝑎𝑛−1𝜌
𝑛−1 +⋯+ 𝑎2𝜌

2 + 𝑎1𝜌
1 + 𝑐  

𝐹(𝜌) = 2𝜌 𝑎𝑛𝜌
𝑛 + 𝑎𝑛−1𝜌

𝑛−1 +⋯+ 𝑎2𝜌
2 + 𝑎1𝜌

1 + 𝑐  



What we could do analytically? 
Real part 

𝑑

𝑑𝑡
𝜌 = 2𝜌 𝑎𝑛𝜌

𝑛 + 𝑎𝑛−1𝜌
𝑛−1 +⋯+ 𝑎2𝜌

2 + 𝑎1𝜌
1 + 𝑐  

𝐹(𝜌) = 2𝜌 𝑎𝑛𝜌
𝑛 + 𝑎𝑛−1𝜌

𝑛−1 +⋯+ 𝑎2𝜌
2 + 𝑎1𝜌

1 + 𝑐  

The stationary solutions of the 
first equation, which is 𝐹 𝜌 = 0 
corresponds to either a steady 
state at 𝜌 = 0 or to limit cycles 
for 𝜌 > 0 if such solutions exist! 

Stability of a stationary 
solution is given by the 
condition: 

𝜌 𝑎𝑛𝜌
𝑛 + 𝑎𝑛−1𝜌

𝑛−1 +⋯+ 𝑎2𝜌
2 + 𝑎1𝜌

1 + 𝑐 = 0 

𝑑

𝑑𝜌
𝐹 𝜌 < 0 

𝜇 𝜌 ≡
𝑑

𝑑𝜌
𝐹 𝜌

𝐹 𝜌 =0

< 0;  



What we could do analytically? 
Imaginary part 

𝑍
𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 + 𝑖𝜔 𝑍𝑍 

𝑍
𝑑

𝑑𝑡
𝑍 = 𝑎𝑛 𝑍

2𝑛 + 𝑎𝑛−1 𝑍
2𝑛−2 +⋯+ 𝑎2 𝑍

4 + 𝑎1 𝑍
2 + 𝑐 − 𝑖𝜔 𝑍𝑍 

𝑍 𝑡 ≡ 𝜌 𝑡 𝑒𝑖𝜑 𝑡 ; 𝜌 ≡ 𝑍 2 ≡ 𝑍𝑍 

Imaginary part: 𝑍
𝑑

𝑑𝑡
𝑍 − 𝑍

𝑑

𝑑𝑡
𝑍 = 2𝑖𝜌𝜔 

Calculating the derivatives 
in the left side: 

𝑍
𝑑

𝑑𝑡
𝑍 − 𝑍

𝑑

𝑑𝑡
𝑍

= 𝜌 𝑡 𝑒−𝑖𝜑 𝑡
𝑑

𝑑𝑡
𝜌 𝑡 𝑒𝑖𝜑 𝑡

− 𝜌 𝑡 𝑒𝑖𝜑 𝑡
𝑑

𝑑𝑡
𝜌 𝑡 𝑒−𝑖𝜑 𝑡  

𝑍
𝑑

𝑑𝑡
𝑍 − 𝑍

𝑑

𝑑𝑡
𝑍 ≡ 2𝑖𝜌

𝑑

𝑑𝑡
𝜑 = 2𝑖𝜌𝜔 

𝑑

𝑑𝑡
𝜑 = 𝜔 

Finally: 

The last equation shows that the 
phase velocity, or rotational 
frequency of the system is given 
(for 𝜌 > 0) by 𝜔, - the imaginary 
part of the 𝐴0 coefficient! 



Application - Model 𝑍 to the fourth 
𝑑

𝑑𝑡
𝑍 = 𝑎1 𝑍

2 + 𝐴0 𝑍;  

𝐴0 = 𝑐 + 𝑖𝜔;   
 

𝑍 𝑡 ≡ 𝜌 𝑡 𝑒𝑖𝜑 𝑡 ; 𝜌 ≡ 𝑍 2 ≡ 𝑍𝑍;  
 

𝐹 𝜌 = 2𝜌 𝑎1𝜌 + 𝑐 ;  
𝑑

𝑑𝑡
𝜑 = 𝜔 

𝜌: 𝐹 𝜌 = 0 ⇒ 2𝜌 𝑎1𝜌 + 𝑐 = 0  
⇒  𝜌 = 0;  𝜌 = −𝑐 𝑎1;   

 

𝜇 ≡
𝑑

𝑑𝜌
𝐹 𝜌 < 0 ⇒ 4𝑎1𝜌 + 2𝑐 < 0;  

{𝜌 = 0, 𝜇 = 𝑐} 

{𝜌 = −
𝑐

𝑎1
, 𝜇 = −𝑐} 

𝑎1, 𝑐  

𝑎1 > 0 → unstable system 
𝑎1 < 0, 𝑐 > 0 → one stable limit cycle (LC) 
𝑎1 < 0, 𝑐 < 0 → one stable steady state (SS) 



Application – single unit 
𝑎1 = −1,   −1 ≤ 𝑐 ≤ 1 



Application – single unit when c is 
close to zero  
𝑎1 = −1,   −0.1 ≤ 𝑐 ≤ 0.1 



Application – single unit - Dependence 
on Initial Conditions  
𝑎1 = −1, 𝑐 = −0.9    −1 < 𝑖𝑛𝑖 < 1 



Network Model 

𝑑

𝑑𝑡
𝑍𝑖 = 𝑎1 𝑍𝑖

2 + 𝑐 + 𝑖𝜔 𝑍𝑖 + 𝐺𝑖𝑗𝑍𝑗
𝑁

𝑗=1
+ 𝜀𝑖 𝑡  



Application – two coupled units 
𝑎1 = −1, 𝑐 = −0.09 

        1-no conn; 2-blue is conn. to green; 3-green is conn. to blue; 4-bidirectional conn. 
  



Application – 11 coupled units 

𝑎1 = −1, 𝑐 > −0.09 



Application (c=-0.9)  
11 coupled units  

Network Dependence 



Application (c=-0.5)  
 



Application (c=-0.1)  
 


