Multiple oscillatory states in models of collective neuronal dynamics

stability, and the role of connections (networks)
22.10.2013

What is the place of Analytical Models?

Class models Z to the even power

What we could do analytically? Some remarks and ideas.

 behavior of the solutions of the equation, one may ignore the input $\varepsilon(t)$! rotations!

From our equation we can derive two equations describing the time evolution of the radial and angular components!

Writing our equation without $\varepsilon(t)$ for variable Z, and the conjugate equation, we are receiving two equations:

What we could do analytically?

$$
\begin{aligned}
& \frac{d}{d t} Z=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+A_{0}\right) Z+\varepsilon(t) \\
& \frac{d}{d t} Z=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c+i \omega\right) Z \\
& \frac{d}{d t} \bar{Z}=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c-i \omega\right) \bar{Z} \\
& \bar{Z} \frac{d}{d t} Z=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c+i \omega\right) Z \bar{Z} \\
& Z \frac{d}{d t} \bar{Z}=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c-i \omega\right) \bar{Z} Z
\end{aligned}
$$

What we could do analytically? Real part

$$
\begin{aligned}
\bar{Z} \frac{d}{d t} Z & =\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c+i \omega\right) Z \bar{Z} \\
Z \frac{d}{d t} \bar{Z} & =\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c-i \omega\right) \bar{Z} Z \\
Z(t) & \equiv \sqrt{\rho(t)} e^{i \varphi(t)} ; \rho \equiv|Z|^{2} \equiv Z \bar{Z}
\end{aligned}
$$

Real part:

$$
\begin{gathered}
\bar{Z} \frac{d}{d t} Z+Z \frac{d}{d t} \bar{Z}=2\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c\right) Z \bar{Z} \\
\frac{d}{d t} \rho=2 \rho\left(a_{n} \rho^{n}+a_{n-1} \rho^{n-1}+\cdots+a_{2} \rho^{2}+a_{1} \rho^{1}+c\right) \\
F(\rho)=2 \rho\left(a_{n} \rho^{n}+a_{n-1} \rho^{n-1}+\cdots+a_{2} \rho^{2}+a_{1} \rho^{1}+c\right)
\end{gathered}
$$

What we could do analytically? Real part

$$
\begin{aligned}
& \frac{d}{d t} \rho=2 \rho\left(a_{n} \rho^{n}+a_{n-1} \rho^{n-1}+\cdots+a_{2} \rho^{2}+a_{1} \rho^{1}+c\right) \\
& \quad F(\rho)=2 \rho\left(a_{n} \rho^{n}+a_{n-1} \rho^{n-1}+\cdots+a_{2} \rho^{2}+a_{1} \rho^{1}+c\right)
\end{aligned}
$$

The stationary solutions of the

Stability of a stationary solution is given by the condition:
first equation, which is $F(\rho)=0$ corresponds to either a steady state at $\rho=0$ or to limit cycles for $\rho>0$ if such solutions exist!

$$
\rho\left(a_{n} \rho^{n}+a_{n-1} \rho^{n-1}+\cdots+a_{2} \rho^{2}+a_{1} \rho^{1}+c\right)=0
$$

$$
\frac{d}{d \rho} F(\rho)<0
$$

$$
\longrightarrow \mu(\rho) \equiv\left[\frac{d}{d \rho} F(\rho)\right]_{F(\rho)=0}<0 ;
$$

What we could do analytically? Imaginary part

$$
\begin{aligned}
& \bar{Z} \frac{d}{d t} Z=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c+i \omega\right) Z \bar{Z} \\
& Z \frac{d}{d t} \bar{Z}=\left(a_{n}|Z|^{2 n}+a_{n-1}|Z|^{2 n-2}+\cdots+a_{2}|Z|^{4}+a_{1}|Z|^{2}+c-i \omega\right) \bar{Z} Z
\end{aligned}
$$

$$
Z(t) \equiv \sqrt{\rho(t)} e^{i \varphi(t)} ; \rho \equiv|Z|^{2} \equiv Z \bar{Z}
$$

Imaginary part: $\bar{Z} \frac{d}{d t} Z-Z \frac{d}{d t} \bar{Z}=2 i \rho \omega$
Finally:

$$
\bar{Z} \frac{d}{d t} Z-Z \frac{d}{d t} \bar{Z} \equiv 2 i \rho \frac{d}{d t} \varphi=2 i \rho \omega
$$

Calculating the derivatives in the left side:

$$
\begin{aligned}
& \bar{Z} \frac{d}{d t} Z- Z \\
& \frac{d}{d t} \bar{Z} \\
&=\sqrt{\rho(t)} e^{-i \varphi(t)} \frac{d}{d t}\left(\sqrt{\rho(t)} e^{i \varphi(t)}\right) \\
&-\sqrt{\rho(t)} e^{i \varphi(t)} \frac{d}{d t}\left(\sqrt{\rho(t)} e^{-i \varphi(t)}\right)
\end{aligned}
$$

The last equation shows that the phase velocity, or rotational frequency of the system is given (for $\rho>0$) by ω, - the imaginary part of the A_{0} coefficient!

Application - Model Z to the fourth

$$
\left.\begin{array}{cc}
\frac{d}{d t} Z=\left(a_{1}|Z|^{2}+A_{0}\right) Z ; & \left\{\rho=-\frac{c}{a_{1}}, \mu=-c\right\} \\
A_{0}=c+i \omega ; & \left\{a_{1}, c\right\}
\end{array}\right] \begin{gathered}
a_{1}>0 \rightarrow \text { unstable system } \\
Z(t) \equiv \sqrt{\rho(t)} e^{i \varphi(t)} ; \rho \equiv|Z|^{2} \equiv Z \bar{Z} ;
\end{gathered} \begin{gathered}
a_{1}<0, c>0 \rightarrow \text { one stable limit cycle (LC) } \\
F(\rho)=2 \rho\left(a_{1} \rho+c\right) ; \\
\frac{d}{d t} \varphi=\omega \\
\downarrow \\
\downarrow: F(\rho)=0 \Rightarrow 2 \rho\left(a_{1} \rho+c\right)=0 \\
\Rightarrow \rho=0 ; \rho=-c / a_{1} ; \\
\mu \equiv \frac{d}{d \rho} F(\rho)<0 \Rightarrow 4 a_{1} \rho+2 c<0 ;
\end{gathered}
$$

Application - single unit

$$
a_{1}=-1, \quad-1 \leq c \leq 1
$$

Application - single unit when c is close to zero

$$
a_{1}=-1, \quad-0.1 \leq c \leq 0.1
$$

Application - single unit - Dependence on Initial Conditions

$$
a_{1}=-1, c=-0.9 \quad-1<\text { ini }<1
$$

Network Model

$$
\frac{d}{d t} Z_{i}=\left(a_{1}\left|Z_{i}\right|^{2}+c+i \omega\right) Z_{i}+\sum_{j=1}^{N} G_{i j} Z_{j}+\varepsilon_{i}(t)
$$

Application - two coupled units

$$
a_{1}=-1, c=-0.09
$$

1-no conn; 2-blue is conn. to green; 3-green is conn. to blue; 4-bidirectional conn.

Application - 11 coupled units

$$
a_{1}=-1, c>-0.09
$$

Application (c=-0.9) 11 coupled units Network Dependence

