00	0000	00000	00000000	

Substructuring a Nose Landing Gear – Fuselage System

Nandor Terkovics ¹ Simon Neild ¹ Mark Lowenberg ¹ Bernd Krauskopf ² Sanjiv Sharma ³

¹University of Bristol, UK

²The University of Auckland, NZ

³Airbus in the UK

27 March 2014, Exeter

intro			
Motiv	vation		

- Under certain circumstances pilots can feel vibrations in the cockpit during take off and landing
- The nose gear, which is known to vibrate under certain circumstances, is underneath the cockpit
- The interaction between the nose gear and the fuselage affects the dynamics of both the gear and the fuselage

[NASA test] [Birmingham landing]

Wallace, M. I., et al. "Stability analysis of realtime dynamic substructuring using delay differential equation models." Earthquake engineering and structural dynamics 34.15 (2005): 1817-1832

-∢ ⊒ →

Earthquake engineering and structural dynamics 34.15 (2005): 1817-1832

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

伺 と く ヨ と く ヨ と

Motions with lateral component at the nose gear attachment point

Substructured landing gear

	The Coupled Model ○●○○		

Landing gear model

- 3 degrees of freedom
 - lateral bending angle δ
 - 2 torsional angle ψ
 - Iateral fuselage displacement y
- 2 constrained states
 - vertical fusleage displacement z
 - 2 lateral tyre displacement λ

N. Terkovics, S. Neild, M. Lowenberg and B. Krauskopf; Bifurcation Analysis of a Coupled Nose Landing Gear-Fuselage System,

Submitted to the Journal of Aircraft, 2013

		The Coupled Model ○○●○		
Tyre	model			

$$\begin{split} \mathbf{v}_{P} &= \dot{\mathbf{r}}_{OP} = \begin{bmatrix} V_{x} + \dot{r}_{AC}^{x} + \dot{x}\cos\theta - x\,\dot{\theta}\sin\theta - \frac{d}{dt}\lambda\left(x,t\right)\sin\theta - \lambda\left(x,t\right)\dot{\theta}\cos\theta\\ \dot{y} + \dot{r}_{AC}^{y} + \dot{x}\sin\theta + x\,\dot{\theta}\cos\theta + \frac{d}{dt}\lambda\left(x,t\right)\cos\theta - \lambda\left(x,t\right)\dot{\theta}\sin\theta\\ \dot{z} + \dot{r}_{AC}^{z} \end{bmatrix}, \\ \frac{d}{dt}\lambda\left(x,t\right) &= \dot{\lambda}\left(x,t\right) + \lambda'\left(x,t\right)\dot{x}. \\ \text{Boundary condition} \quad \rightarrow \lambda'\left(x,t\right)\Big|_{x=h} = -\frac{\lambda_{1}(t)}{L}. \\ \dot{\lambda}\left(x,t\right)\Big|_{x=h} &= \dot{\lambda}_{1} = \left(V_{x} + \dot{r}_{AC}^{x}\right)\left(\sin\theta - \frac{\lambda_{1}}{L}\cos\theta\right) - \left(\dot{y} + \dot{r}_{AC}^{y}\right)\left(\cos\theta + \frac{\lambda_{1}}{L}\sin\theta\right) - \left(h - \frac{\lambda_{1}^{2}}{L}\right) \end{bmatrix}$$

 $\dot{\theta}$.

◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

	6		
	0000		
	The Coupled Model	The Influence of Coupling	

Equations of motion

Equations of motion (linearized)

$$(\mu + m)\ddot{y} + 2\,\mu\,qf\dot{y} + \mu\,f^{2}y - ml\ddot{\delta} + \frac{J_{w}\,V\cos{(\phi)}\,\dot{\psi}}{R^{2}} - 7\,\frac{(M + m)\,g\,k_{\lambda}\,\lambda}{L} = 0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{y} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos\left(\phi\right)V\dot{\psi}}{R^{2}} - \cos\left(\phi\right)E\left(M+m\right)g\psi - \left(\left(LR\left(M+m\right) - ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin\left(\phi\right)k_{\alpha}}{L}\right)\left(M+m\right)g\lambda = 0$$

$$Jzz \,\ddot{\psi} + cPsi \,\dot{\psi} + \frac{J_w \, LR \, \cos\left(\phi\right) V\dot{\delta}}{R^2} - \frac{J_w \, V \cos\left(\phi\right) \dot{y}}{R^2} + \left(-\sin\left(\phi\right) E\left(M+m\right)g + k_\psi + \frac{J_w \, V^2 \left(\cos\left(\phi\right)\right)^2}{R^2}\right)\psi - \cos\left(\phi\right) E\left(M+m\right)g\delta + \left(7 \, \frac{Ek_\lambda}{L} + \frac{\cos\left(\phi\right) k_\alpha}{L}\right)\left(M+m\right)g\lambda = 0$$

Kinematic constraint of tyre displacement λ

$$(E - h\cos{(\phi)})\dot{\psi} - \dot{y} + LR\dot{\delta} + V\cos{(\phi)}\psi - \frac{V\lambda}{L}$$

The Influence of Coupling 0000 One-parameter bifurcation diagrams

э

Torsional angle ψ vs velocity V for fixed values of M, μ and f_n

Main parameters

- Vertical load M
- 2 Fuselage modal mass μ
- **(9)** Natural frequency of the fuselage mode f_n
- Forward velocity V

Inactive fuselage

Active fuselage

In the active case:

- Activated fuselage oscillations
- Larger velocity range for stable rolling
- Different types of predicted shimmy oscillations for certain velocity ranges

Modal mass μ vs velocity V for fixed values of M and f_n

			The Influence of Coupling	
			00000	
T 1 1	CI.	c	1 I I I	

I he influence of vertical load

Modal mass μ vs velocity V for fixed values of M and f_n

돈에 돈

For higher load

∃ ► < ∃ ►</p>

æ

	The Influence of Coupling	
	00000	

- It has been shown that there is significant interaction between the fuselage and the nose landing gear
- The feasibility study of RTDS is, therefore, relevant

RTDS in an aircraft point of view •00000000

Substructuring of the coupled system

Physical substructure: Numerical model: Transfer system:

Landing gear Fuselage Hydraulic actuator

∃→ < ∃→</p>

э

Modelling the actuator

- time delay $\rightarrow \chi = y(t \tau)$
- 2 time lag $\rightarrow \dot{\chi} = \frac{1}{\tau} (y \chi)$

		RTDS in an aircraft point of view	
		00000000	

Time delay model

<ロ> <同> <同> < 回> < 回>

= 990

Substructuring of the coupled system

Time delay model – Substructured equations (linearized)

$$(\mu + m)\ddot{y} + 2\,\mu\,qf\dot{y} + \mu\,f^{2}y - ml\ddot{\delta} + \frac{J_{w}\,V\cos{(\phi)}\,\dot{\psi}}{R^{2}} - 7\,\frac{(M + m)\,g\,k_{\lambda}\,\lambda}{L} = 0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{y} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos\left(\phi\right)V\dot{\psi}}{R^{2}} - \cos\left(\phi\right)E\left(M+m\right)g\psi - \left(\left(LR\left(M+m\right) - ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin\left(\phi\right)k_{\alpha}}{L}\right)\left(M+m\right)g\lambda = 0$$

$$Jzz \ddot{\psi} + cPsi \dot{\psi} + \frac{J_w LR \cos(\phi) V\dot{\delta}}{R^2} - \frac{J_w V \cos(\phi) \dot{y}}{R^2} + \left(-\sin(\phi) E (M+m) g + k_\psi + \frac{J_w V^2 (\cos(\phi))^2}{R^2}\right) \psi - \cos(\phi) E (M+m) g\delta + \left(7 \frac{Ek_\lambda}{L} + \frac{\cos(\phi) k_\alpha}{L}\right) (M+m) g\lambda = 0$$

$$(E - h\cos{(\phi)})\dot{\psi} - \dot{y} + LR\dot{\delta} + V\cos{(\phi)}\psi - \frac{V\lambda}{L}$$

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

- 4 同 6 - 4 三 6 - 4 三 6

intro RTDS The Coupled Model The Influence of Coupling RTDS in an aircraft point of view 00 0000 000000 0000000

Substructuring of the coupled system

Time delay model – Substructured equations (linearized)

$$\underbrace{(\mu+m)\ddot{y}+2\,\mu\,qf\dot{y}+\mu\,f^2y-ml\ddot{\delta}+\frac{J_w\,V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\begin{pmatrix} ml^2 + Jyy \end{pmatrix} \ddot{\delta} - ml\ddot{y} + c_{\delta} \dot{\delta} - \frac{J_w LR \cos(\phi) V \dot{\psi}}{R^2} - \cos(\phi) E(M+m) g \psi - ((LR (M+m) - ml)g - k_{\delta}) \delta + \left(7 \frac{LR k_{\lambda}}{L} - \frac{\sin(\phi) k_{\alpha}}{L}\right) (M+m) g \lambda = 0$$

$$Jzz \ddot{\psi} + cPsi \dot{\psi} + \frac{J_w LR \cos(\phi) V\dot{\delta}}{R^2} - \frac{J_w V \cos(\phi) \dot{y}}{R^2} + \left(-\sin(\phi) E (M+m) g + k_{\psi} + \frac{J_w V^2 (\cos(\phi))^2}{R^2}\right) \psi - \cos(\phi) E (M+m) g\delta + \left(7 \frac{Ek_{\lambda}}{L} + \frac{\cos(\phi) k_{\alpha}}{L}\right) (M+m) g\lambda = 0$$

$$(E - h\cos{(\phi)})\dot{\psi} - \dot{y} + LR\dot{\delta} + V\cos{(\phi)}\psi - \frac{V\lambda}{L}$$

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

< 17 >

A B + A B +

intro RTDS The Coupled Model The Influence of Coupling RTDS in an aircraft point of view 00 0000 00000 0000000

Substructuring of the coupled system

Time delay model – Substructured equations (linearized)

$$(\underbrace{\mu+m)\ddot{y}+2\,\mu\,qf\dot{y}+\mu\,f^2y}_{L}-ml\ddot{\delta}+\frac{J_w\,V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{y} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos(\phi)V\dot{\psi}}{R^{2}} - \cos(\phi)E(M+m)g\psi - \left(\left(LR(M+m) - ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin(\phi)k_{\alpha}}{L}\right)(M+m)g\lambda = 0$$

$$Jzz \ddot{\psi} + cPsi \dot{\psi} + \frac{J_w LR \cos(\phi) V\dot{\delta}}{R^2} - \frac{J_w V \cos(\phi) \dot{y}}{R^2} + \left(-\sin(\phi) E (M+m) g + k_{\psi} + \frac{J_w V^2 (\cos(\phi))^2}{R^2}\right) \psi - \cos(\phi) E (M+m) g\delta + \left(7 \frac{Ek_{\lambda}}{L} + \frac{\cos(\phi) k_{\alpha}}{L}\right) (M+m) g\lambda = 0$$

$$(E - h\cos{(\phi)})\dot{\psi} - \dot{y} + LR\dot{\delta} + V\cos{(\phi)}\psi - \frac{V\lambda}{L}$$

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

< 17 >

A B + A B +

intro RTDS The Coupled Model The Influence of Coupling RTDS in an aircraft point of view 00 0000 00000 0000000

Substructuring of the coupled system

Time delay model – Substructured equations (linearized)

$$(\underline{\mu+m})\ddot{y}+2\mu qf\dot{y}+\mu f^2y-ml\ddot{\delta}+\frac{J_w V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{y} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos\left(\phi\right)V\dot{\psi}}{R^{2}} - \cos\left(\phi\right)E\left(M+m\right)g\psi - \left(\left(LR\left(M+m\right) - ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin\left(\phi\right)k_{\alpha}}{L}\right)\left(M+m\right)g\lambda = 0$$

$$Jzz \, \ddot{\psi} + cPsi \, \dot{\psi} + \frac{J_w \, LR \, \cos\left(\phi\right) \, V\dot{\delta}}{R^2} - \frac{J_w \, V \cos\left(\phi\right) \, \dot{y}}{R^2} + \left(-\sin\left(\phi\right) E \left(M+m\right) g + k_\psi + \frac{J_w \, V^2 \left(\cos\left(\phi\right)\right)^2}{R^2}\right) \psi - \cos\left(\phi\right) E \left(M+m\right) g \delta + \left(7 \, \frac{Ek_\lambda}{L} + \frac{\cos\left(\phi\right) k_\alpha}{L}\right) \left(M+m\right) g \lambda = 0$$

$$(E - h\cos{(\phi)})\dot{\psi} - \dot{y} + LR\dot{\delta} + V\cos{(\phi)}\psi - \frac{V\lambda}{L}$$

- 4 同 6 - 4 三 6 - 4 三 6

intro RTDS The Coupled Model The Influence of Coupling RTDS in an aircraft point of view 00 0000 00000 000000

Substructuring of the coupled system

Time delay model – Substructured equations (linearized)

$$(\underbrace{\mu+m)\ddot{y}+2\,\mu\,qf\dot{y}+\mu\,f^2y}_{R^2}-ml\ddot{\delta}+\frac{J_w\,V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{y} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos(\phi)V\dot{\psi}}{R^{2}} - \cos(\phi)E(M+m)g\psi - \left(\left(LR(M+m) - ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin(\phi)k_{\alpha}}{L}\right)(M+m)g\lambda = 0$$

$$Jzz \, \ddot{\psi} + cPsi \, \dot{\psi} + \frac{J_w \, LR \, \cos\left(\phi\right) \, V\dot{\delta}}{R^2} - \frac{J_w \, V \cos\left(\phi\right) \, \dot{y}}{R^2} + \left(-\sin\left(\phi\right) E \left(M+m\right) g + k_\psi + \frac{J_w \, V^2 \left(\cos\left(\phi\right)\right)^2}{R^2}\right) \psi - \cos\left(\phi\right) E \left(M+m\right) g \delta + \left(7 \, \frac{Ek_\lambda}{L} + \frac{\cos\left(\phi\right) k_\alpha}{L}\right) \left(M+m\right) g \lambda = 0$$

$$(E - h\cos(\phi))\dot{\psi} + \dot{y} + LR\dot{\delta} + V\cos(\phi)\psi - \frac{V\lambda}{L}$$

< 17 >

Substructuring of the coupled system

Substructured equations (linearized)

$$(\underbrace{\mu+m)\ddot{y}+2\mu\,qf\dot{y}+\mu\,f^2y}_{R^2}-ml\ddot{\delta}+\frac{J_w\,V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{\psi}(t-\tau) + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos(\phi)V\dot{\psi}}{R^{2}} - \cos(\phi)E(M+m)g\psi - \left((LR(M+m) - ml)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin(\phi)k_{\alpha}}{L}\right)(M+m)g\lambda = 0$$

$$J_{ZZ} \ddot{\psi} + cPsi \dot{\psi} + \frac{J_w LR \cos(\phi) V\dot{\delta}}{R^2} - \frac{J_w V \cos(\phi) \dot{\psi}(t-\tau)}{R^2} + \left(-\sin(\phi) E (M+m) g + k_\psi + \frac{J_w V^2 (\cos(\phi))^2}{R^2}\right) \psi - \cos(\phi) E (M+m) g\delta + \left(7 \frac{Ek_\lambda}{L} + \frac{\cos(\phi) k_\alpha}{L}\right) (M+m) g\lambda = 0$$

$$(E - h\cos(\phi))\dot{\psi} - \dot{\psi}(t - \tau) + LR\dot{\delta} + V\cos(\phi)\psi - \frac{V\lambda}{L}$$

< 17 ▶

< ∃> < ∃>

			RTDS in an aircraft point of view	
Critic	cal dela	IV		

$$\dot{x}(t) = A_0 x(t) + A_1 \dot{x}(t-\tau) + A_2 x(t-\tau)$$

伺 と く ヨ と く ヨ と

= 990

			RTDS in an aircraft point of view 0000●0000	
Critic	al dela	IV		

$$\dot{x}(t) = A_0 x(t) + A_1 \dot{x}(t-\tau) + A_2 x(t-\tau)$$

Characteristic equation

$$det(-\lambda I + A_0 + (\lambda A_1 + A_2) e^{-\lambda \tau}) = 0$$

∃ 990

글 > : < 글 >

			RTDS in an aircraft point of view 000000000	
Critic	al dela	V		

$$\dot{x}(t) = A_0 x(t) + A_1 \dot{x}(t-\tau) + A_2 x(t-\tau)$$

Characteristic equation

$$det(-\lambda I + A_0 + (\lambda A_1 + A_2) e^{-\lambda \tau}) = 0$$

돈에 돈

			RTDS in an aircraft point of view 000000000	
Critic	al dela	V		

$$\dot{x}(t) = A_0 x(t) + A_1 \dot{x}(t-\tau) + A_2 x(t-\tau)$$

Characteristic equation

$$det(-\lambda I + A_0 + (\lambda A_1 + A_2) e^{-\lambda \tau}) = 0$$

문 문 문

	RTDS 00	The Coupled Model	The Influence of Coupling	RTDS in an aircraft point of view 000000000	
Critic	al dela	v			

$$\dot{x}(t) = A_0 x(t) + A_1 \dot{x}(t-\tau) + A_2 x(t-\tau)$$

Characteristic equation

$$det(-\lambda I + A_0 + (\lambda A_1 + A_2) e^{-\lambda \tau}) = 0$$

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

		RTDS in an aircraft point of view	
		000000000	

Time lag model

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

イロン イロン イヨン イヨン

000000000

RTDS in an aircraft point of view

< 17 ▶

3

Substructuring of the coupled system

Time lag model – Substructured equations (linearized)

$$(\underbrace{\mu+m)\ddot{y}+2\,\mu\,qf\dot{y}+\mu\,f^2y}_{L}-ml\ddot{\delta}+\frac{J_w\,V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{y} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos(\phi)V\dot{\psi}}{R^{2}} - \cos(\phi)E(M+m)g\psi - \left(\left(LR(M+m) - ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin(\phi)k_{\alpha}}{L}\right)(M+m)g\lambda = 0$$

$$Jzz \,\ddot{\psi} + cPsi \,\dot{\psi} + \frac{J_w \, LR \, \cos\left(\phi\right) \, V\dot{\delta}}{R^2} - \frac{J_w \, V \cos\left(\phi\right) \,\dot{y}}{R^2} + \left(-\sin\left(\phi\right) E \left(M+m\right) g + k_\psi + \frac{J_w \, V^2 \left(\cos\left(\phi\right)\right)^2}{R^2}\right) \psi - \cos\left(\phi\right) E \left(M+m\right) g\delta + \left(7 \, \frac{Ek_\lambda}{L} + \frac{\cos\left(\phi\right) k_\alpha}{L}\right) \left(M+m\right) g\lambda = 0$$

$$(E - h\cos(\phi))\dot{\psi} + \dot{y} + LR\dot{\delta} + V\cos(\phi)\psi - \frac{V\lambda}{L}$$

intro RTDS The Coupled Model The Influence of Coupling RTDS in an a

RTDS in an aircraft point of view

- 4 回 ト - 4 回 ト

3

Conclusions

Substructuring of the coupled system

Time lag model - Substructured equations (linearized)

$$(\underline{\mu+m})\ddot{y}+2\mu qf\dot{y}+\mu f^2y-ml\ddot{\delta}+\frac{J_w V\cos{(\phi)}\,\dot{\psi}}{R^2}-7\,\frac{(M+m)\,g\,k_\lambda\,\lambda}{L}=0$$

$$\left(ml^{2} + Jyy\right)\ddot{\delta} - ml\ddot{\chi} + c_{\delta}\dot{\delta} - \frac{J_{w}LR\cos\left(\phi\right)V\dot{\psi}}{R^{2}} - \cos\left(\phi\right)E\left(M+m\right)g\psi - \left(\left(LR\left(M+m\right)-ml\right)g - k_{\delta}\right)\delta + \left(7\frac{LRk_{\lambda}}{L} - \frac{\sin\left(\phi\right)k_{\alpha}}{L}\right)\left(M+m\right)g\lambda = 0$$

$$Jzz \ddot{\psi} + cPsi \dot{\psi} + \frac{J_w LR \cos(\phi) V\dot{\delta}}{R^2} - \frac{J_w V \cos(\phi) \dot{\chi}}{R^2} + \left(-\sin(\phi) E (M+m)g + k_{\psi} + \frac{J_w V^2 (\cos(\phi))^2}{R^2}\right) \psi - \cos(\phi) E (M+m)g\delta + \left(7 \frac{Ek_{\lambda}}{L} + \frac{\cos(\phi) k_{\alpha}}{L}\right) (M+m)g\lambda = 0$$

$$(E - h\cos(\phi))\dot{\psi} + \dot{\chi} + LR\dot{\delta} + V\cos(\phi)\psi - \frac{V\lambda}{L}$$

$$\dot{\chi} = \frac{1}{T} (y - \chi)$$

N. Terkovics, March 2013, Exeter Substructuring a Nose Landing Gear – Fuselage System

	RTDS 00	The Coupled Model	The Influence of Coupling	RTDS in an aircraft point of view	
Critic	al lag				

Ordinary differential differential equation (increased order):

 $\dot{x}(t) = A_0 x(t)$

2

∃ ► < ∃ ►</p>

	RTDS 00	The Coupled Model	The Influence of Coupling 00000	RTDS in an aircraft point of view	
Critic	al lag				

Ordinary differential differential equation (increased order):

 $\dot{x}(t) = A_0 x(t)$

글 > : < 글 >

			RTDS in an aircraft point of view 00000000●	
Critic	al lag			

Ordinary differential differential equation (increased order):

 $\dot{x}(t) = A_0 x(t)$

Good agreement for small delays

æ

∃ ► < ∃ ►</p>

				Conclusions
Conc	lusions	;		

- A model has been developed to study interaction between the landing gear and lateral fuselage dynamics
- Given the right parameters, fuselage modes having lateral components can be excited during take-off and landing
- Significant proportion of the excitation energy feeds modes of lower modal masses.
- There is sufficient feedback between the two subsystems, so substructuring of the system is relevant
- Solution Even a slight delay may cause qualitative change in the behaviour

	The Influence of Coupling	

Thank you

Footnote: N.T. is looking for a postdoc...

N. Terkovics, March 2013, Exeter

Substructuring a Nose Landing Gear - Fuselage System