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intro

Motivation

@ Under certain circumstances pilots can
feel vibrations in the cockpit during
take off and landing

@ The nose gear, which is known to
vibrate under certain circumstances, is
underneath the cockpit

@ The interaction between the nose gear
and the fuselage affects the dynamics
of both the gear and the fuselage

[NASA test] [Birmingham landing]
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http://www.youtube.com/watch?v=gOZa0XfG0no
http://www.youtube.com/watch?v=5x85YYLuCY4

RTDS
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Real-time dynamic substructuring (RTDS)
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Wallace, M. |., et al. “Stability analysis of realtime dynamic substructuring using delay differential equation models.”
Earthquake engineering and structural dynamics 34.15 (2005): 1817-1832
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Real-time dynamic substructuring (RTDS)

my+cy+ky+ksy(t—7)=0,
Z+20z+1+pz(t—71) =0,
N 420N+ 1+pe =0

Stable Region

Wallace, M. |, et al. “Stability analysis of realtime dynamic substructuring using delay differential equation models.”
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The Coupled Model
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The Coupled Model
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Landing gear model

3 degrees of freedom
© lateral bending angle §
@ torsional angle ¢

© lateral fuselage displacement y

2 constrained states

@ vertical fusleage displacement z

@ lateral tyre displacement A

N. Terkovics, S. Neild, M. Lowenberg and B. Krauskopf; Bifurcation Analysis of a Coupled Nose Landing Gear-Fuselage System,

Submitted to the Journal of Aircraft, 2013
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The Coupled Model
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Tyre model
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The Coupled Model
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Equations of motion

Equations of motion (linearized)
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The Influence of Coupling
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One-parameter bifurcation diagrams

Torsional angle 1 vs velocity V for fixed
values of M, p and f,
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@ Vertical load M
@ Fuselage modal mass p
© Natural frequency of the fuselage mode f,

© Forward velocity V
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The Influence of Coupling
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The effect of fuselage oscillations on the coupled system

Inactive fuselage Active fuselage
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The Influence of Coupling
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Two-parameter bifurcation diagrams

Modal mass p vs velocity V
for fixed values of M and f,
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The Influence of Coupling
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The influence of vertical load

Modal mass  vs velocity V
for fixed values of M and f,




The Influence of Coupling
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The influence of vertical load

Modal mass  vs velocity V
for fixed values of M and f,

rch 2013, Exeter

For higher load




The Influence of Coupling
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@ It has been shown that there is significant interaction between the
fuselage and the nose landing gear

@ The feasibility study of RTDS is, therefore, relevant
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RTDS in an aircraft point of view
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Substructuring of the coupled system
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Modelling the actuator
Q time delay — x = y(t — 7)
@ time lag — ¥ = + (y — x)
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Time delay model
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Time delay model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Time delay model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Time delay model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Time delay model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Time delay model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Substructured equations (linearized)
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RTDS in an aircraft point of view
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Critical delay

A neutral functional differential equation:

x(t) = Aox(t) + Arx(t — 7) + Aox(t — 7)
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RTDS in an aircraft point of view
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Critical delay

A neutral functional differential equation:
x(t) = Aox(t) + Arx(t — 7) + Aox(t — )
Characteristic equation

det(—A + Ay + (ML + Ax) e ) =0
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RTDS in an aircraft point of view
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Critical delay

A neutral functional differential equation:
X(t) = Aox(t) + Arx(t — 7) + Aox(t — 7)

Characteristic equation

det(—A + Ay + (ML + Ax) e ) =0
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RTDS in an aircraft point of view
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Critical delay

A neutral functional differential equation:
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RTDS in an aircraft point of view
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Critical delay

A neutral functional differential equation:

X(t) = Aox(t) + Arx(t — 7) + Aox(t — 7)

Characteristic equation
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Time lag model
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RTDS in an aircraft point of view
[e]e]e]e]ole] le]e]

Substructuring of the coupled system

Time lag model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Substructuring of the coupled system

Time lag model — Substructured equations (linearized)
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RTDS in an aircraft point of view
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Critical lag

Ordinary differential differential equation (increased order):

x(t) = Aox(t)
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RTDS in an aircraft point of view
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Critical lag

Ordinary differential differential equation (increased order):
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RTDS in an aircraft point of view
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Critical lag

Ordinary differential differential equation (increased order):

x(t) = Aox(t)
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Good agreement for small delays

N. Terkovics, March 2013, Exeter




Conclusions

Conclusions

@ A model has been developed to study interaction between the
landing gear and lateral fuselage dynamics

@ Given the right parameters, fuselage modes having lateral
components can be excited during take-off and landing

@ Significant proportion of the excitation energy feeds modes of lower
modal masses.

@ There is sufficient feedback between the two subsystems, so
substructuring of the system is relevant

@ | Even a slight delay may cause qualitative change in the behaviour

!
why?
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Thank you

Footnote: N.T. is looking for a postdoc...
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