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Overview

Stochastic differential equation:

& = f(x(t),t) + V2Dn(t)

The optimal path is the most
probable path for the transition
between a given starting point xg
at time ty to a given end position

xp at time Ty,q. Xg L~
At e

x T Gate XT} 5

Limit: s <K At K 1

Optimisation problem: Optimal path derived from optimising a
functional of the probability for passing through gates along a path.

Paul Ritchie , Supervisor: Jan Sieber Optimal paths: Revisited 19th November 2015



Introduction

Probability density function P(z,t) of the random variable x(t) is
governed by the Fokker-Planck equation:

OP(x,t)  O*P(x,t) 0
ot =D Ox2 - %(f(xvt}P(xvt»

where a potential U(z,t) satisfies:

ou(z,t)
WD fa,1)
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Introduction

1r —
—P(x,0)
—P((x.3)
0.8f
> 061
‘@
j=
8
0.4f
0.2f
0 ™
-10 -8 -6 -4 -2 0 2 4

X
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|dentities
Fourier Transform P(k,t) of P(x,t)
A S .
Pl t) = / Pla, e d
—o0

Dirac delta identity

o0
/ F(2)5(z — wo)dz = f(xo)
—0o0
Inverse Fourier Transform

1 * 2 ikx
P(x,t) = o P(k,t)e™*dk

—00

Gaussian integral
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Notation

)

tk:tk_l-i-At, for k = 1,..,N+1

xr = xz(tg): Realisation of random variable x at time ¢; conditioned
on having passed through gates 1,....k — 1

Z). Location of path and represents centre of gate k at time ¢

Py (z): Probability density function for being at xj assuming passed
through gates 1,...,k — 1 at time 4

Px: Probability of passing through gate k conditioned on having
passed through gates 1,...,k — 1

Py, (x1,): Probability density function for being at z;, assuming passed
through gates 1, ..., k at time t;

IP’,(CT): Total probability of passing through first k gates
P= IP’EVTJ)rl: Probability of passing through all N 4 1 gates
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Key book results

@ Case 1: Pure diffusion

N b N+ 1 (Tena /d7\ 2
]P)(x, (5, At) = (\/ﬁ) exp ( — E ; (E) dT)
0
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Key book results

@ Case 1: Pure diffusion

_ s N 1 [Tena /472
P = () (- [ (5) o)
0

o Case 2: Absorbing medium

P(z, 5, At) = (\/ﬁy“ exp <— /tOTend - (g)Q+A(j(T))dT>
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Key book results

@ Case 3: Fokker-Planck equation

where

1) = 15 (&) + v

and

2 2
14d°U
Vslw) = @(@) abyrEl
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Key book results

To minimise L, solve the Euler-Lagrange equation:

oL doL
oxr droi
A 2" order BVP is derived that the most likely trajectory will satisfy:

dé:2Dst, z(to) = o
dz x(Tend) =T

where

4D\ dzr )  2da?

1 /dU\? 142
VS:_< U) U
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Ornstein-Uhlenbeck example

Consider the Ornstein-Uhlenbeck process:

@ = —ax(t) + V2Dn(t)

Optimal path satisfies:

Solution can be obtained analytically:

z(t) = wo sinh(a(Teng —t)) + o sinh(a(t — to))

sinh(a(Teng — to))
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Ornstein-Uhlenbeck example
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Time dependent potentials U(z,t)

New PDE is:

oP, 92P, urou? U
o~ Vo (7‘@*%)5

2nd order BVP remains the same:

dVs
v = 2D
v dx
where . ,
LU U U
4D 2 2D
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Ornstein-Uhlenbeck example

Consider the Ornstein-Uhlenbeck process:

@ = —a(t)z(t) + V2Dn(t)

where a is not constant, instead
a(t) = ag — et

The optimal path satisfies:

F=a(t)’z+ ex

To be solved numerically
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Ornstein-Uhlenbeck example

ag = —0.2, e =—0.05
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