Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

> Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

> > ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

1 Introduction

2 Optimal Paths

3 Probability of escape

< ロ > < 部 > < 注 > < 注 > 注 の < </p>

Prototype model for rate-induced tipping (S. Wieczorek)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

• A Tipping event occurs when gradual changes to input levels causes the system to change states.

$$\dot{x} = f(x,t) = (x+\lambda(t))^2 - 1,$$
 $U(x,t) = -\int_x f(\bar{x},t)\mathrm{d}\bar{x}$

n

Normal form for rate-induced tipping

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping Paul Ritchie Exeter (3rd Year PhD Student) Supervised by

Introduction

 \sim

0

• Simplest model for rate-induced tipping:

$$\dot{x} = (x + \lambda)^2 - 1$$

$$\dot{\lambda} = \epsilon \lambda (\lambda_{max} - \lambda)$$

$$\lambda(t) = \frac{\lambda_{max}}{2} \left(\tanh\left(\frac{\lambda_{max}\epsilon t}{2}\right) + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012)

$$\int_{0}^{2} \frac{1}{1} \left(\frac{\lambda_{max}\epsilon t}{2} + 1 \right)$$

(Ashwin et al., 2012

Prototype model for rate-induced tipping (S. Wieczorek)

Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan

Non-

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● ● ● ●

Adding Noise

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

• Brownian motion of a particle is governed by the stochastic differential equation:

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sqrt{2D}\mathrm{d}W_t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

drift $f(X_n, t_n)$; D diffusion.

Adding Noise

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

• Brownian motion of a particle is governed by the stochastic differential equation:

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sqrt{2D}\mathrm{d}W_t$$

drift $f(X_n, t_n)$; D diffusion.

• This is can be discretised into the form:

$$X_{n+1} = X_n + f(X_n, t_n) \mathrm{d}t + \eta \sqrt{2D} \sqrt{\mathrm{d}t}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Adding Noise

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

• Brownian motion of a particle is governed by the stochastic differential equation:

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sqrt{2D}\mathrm{d}W_t$$

drift $f(X_n, t_n)$; D diffusion.

• This is can be discretised into the form:

$$X_{n+1} = X_n + f(X_n, t_n) \mathrm{d}t + \eta \sqrt{2D} \sqrt{\mathrm{d}t}$$

• For the rate-induced example this becomes:

$$X_{n+1} = X_n + ((X_n + \lambda(t_n))^2 - 1) \mathrm{d}t + \eta \sqrt{2D} \sqrt{\mathrm{d}t}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fokker-Planck Equation (FPE)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

• Probability density function of the random variable X_t is governed by the Fokker-Planck equation (FPE):

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2} - \frac{\partial}{\partial x} (f(x,t)P(x,t))$$

How density P(x, t) evolves in potential well U(x, t)

Noise and rate-induced tipping

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie Exeter (3rd Year PhD Student) Supervised by

Optimal Paths

Time profile and phase plane of rate-induced tipping along with the escape rate, $\epsilon = 1.25$, D = 0.008, Prob. of escape = 0.45

(日)

э

Optimal path definition

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by

Outline

Introduction

Optimal Paths

Probability o escape

Summary

References

The optimal path is the most likely path for getting from x_0 to x_T in a time T whilst remaining within the gates of the path.

Variational problem for the optimal path

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

From the FPE it turns out that we need to maximise the following functional F:

$$F = \exp\left[\frac{U(x_0, t_0) - U(x_T, T)}{2D} - \int_{t_0}^T \left(\frac{\dot{x}^2}{4D} + V_s\right) \mathrm{d}\tau\right]$$

which gives us a Boundary Value Problem (BVP):

$$\ddot{x} = 2D \frac{\partial V_s}{\partial x}, \qquad \begin{cases} x(0) = x_0 \\ x(T) = x_T \end{cases}$$

where

$$V_{s} = \frac{1}{4D} \left(\frac{\partial U}{\partial x}\right)^{2} - \frac{1}{2} \frac{\partial^{2} U}{\partial x^{2}} - \frac{1}{2D} \frac{\partial U}{\partial t}$$
(Zhang, 2008), (Ho and Dai, 2008)

Variational problem for the optimal path

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping Paul Ritchie University of Exeter (3rd Year

PhD Student) Supervised by

BVP:

$$\ddot{x} = 2D \frac{\partial V_s}{\partial x}, \qquad \begin{cases} x(0) = x_0 \\ x(T) = x_T \end{cases}$$

.

• To find the optimal time for our optimal path we maximise our *F* again by keeping *T*_{end} free:

$$F = \exp\left[\frac{U(x_0, t_0) - U(x_T, T_{end})}{2D} - \int_{t_0}^{T_{end}} \left(\frac{\dot{x}^2}{4D} + V_s\right) \mathrm{d}\tau\right]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

this is performed using continuation techniques in AUTO.

Introducti

Optimal Paths

Probability o escape

Summary

References

Optimal path for rate-induced tipping

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

Optimal path of escape for rate-induced tipping along with the escape rate, $\epsilon = 1.25$, D = 0.008, Prob. of escape = 0.45

chie gr y of a 0.4 r above a 0

Time profile

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Density plots from simulations

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

Density plots of simulations started at $x_0 = -1$ at t = -10 and run until t = 10 for rate-induced system with optimal path added, $\epsilon = 1.25$, D = 0.008

Colour plot for optimal time

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability o escape

Summary

References

• Maximising the functional *F* using continuation techniques in AUTO gives the optimal time for escape.

Colour contour plots for the optimal time of escape for a range of ϵ and D values.

Calculating probability of following a path

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by

Dr. Jan Sieber

Outline

Introduction

Optima Paths

Probability of escape

Summary

References

Previously,

This time we take $dt \rightarrow 0$ but keep δ fixed.

- Calculate probability of going from one gate to the next assuming we are in the gate to start with.
- Use instantaneous eigenmodes of the system to approximate the probability of escape.

Instantaneous Eigenmodes for FPE

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optima Paths

Probability of escape

Summary

References

Fokker-Planck equation:

$$\frac{\partial P(x,t)}{\partial t} = \left[D \frac{\partial^2}{\partial x^2} - f(x,t) \frac{\partial}{\partial x} - \frac{\partial f(x,t)}{\partial x} \right] P(x,t)$$

The FPE can then be written as:

$$\dot{\mathbf{P}} = A(t)\mathbf{P}$$

• Assume solution to be of the form:

$$\mathbf{P}(t) = x_1(t)\mathbf{v}_1(t) + x_2(t)\mathbf{v}_2(t) + \dots$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $A(t)\mathbf{v}_k(t) = \lambda_k(t)\mathbf{v}_k(t)$

Instantaneous Eigenvalue Spectrum

Non-

Probability of escape

Eigenvalue spectrum for the full rate-induced system

Instantaneous Eigenmodes for FPE

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optima Paths

Probability of escape

Summary

References

• Initial x_k given by projection of some given initial density:

$$x_k = \langle \mathbf{w}_k^T, \mathbf{P}^{initial} \rangle$$

where \mathbf{w}_k^T arise from the adjoint of the matrix A:

$$A^{adj}(t) = D \frac{\partial^2}{\partial x^2} + f(x, t) \frac{\partial}{\partial x}$$

• Subsequent x_k are gained through substituting the assumed solution into the FPE:

$$\dot{x}_1 \mathbf{v}_1 + x_1 \dot{\mathbf{v}}_1 + \dot{x}_2 \mathbf{v}_2 + x_2 \dot{\mathbf{v}}_2 + \dots = A(x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots)$$
$$= \lambda_1 x_1 \mathbf{v}_1 + \lambda_2 x_2 \mathbf{v}_2 + \dots$$

Multiply this equation on the left by **w**₁^T and use **w**_i^T **v**_j = δ_{ij} to give:

.

$$\dot{\mathbf{x}}_1 = \lambda_1 \mathbf{x}_1 - \mathbf{w}_1^T \dot{\mathbf{v}}_1 \mathbf{x}_1 - \mathbf{w}_1^T \dot{\mathbf{v}}_2 \mathbf{x}_2 - \dots$$

Comparison of simulations with eigenmodes

Overview of probability of escape using simulations

Probability of

escape

Starting simulations at $x_0 = -1$ and observing the probability of escaping potential well for a large range of ϵ and D values

Comparison for probability of escape using different techniques

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optima Paths

Probability of escape

Summary

References

Contour plots comparing % that escape denoted by the colour in using simulations with using either 1 or 3 modes.

590

Summary

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

- To calculate the timing of escape we have a BVP that can be solved.
- For probability of escape we can use the mode approximation of the system.
- The timing and probability of escape can be used as an extra early-warning indicator for tipping events.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie University of Exeter (3rd Year PhD Student) Supervised by Dr. Jan Sieber

Outline

Introduction

Optimal Paths

Probability of escape

Summary

References

- P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 370(1962):1166–1184, 2012.
- C.-L. Ho and Y.-M. Dai. A perturbative approach to a class of fokker–planck equations. *Modern Physics Letters B*, 22(07): 475–481, 2008.
- P. Ritchie and J. Sieber. Interactions between noise and rate-induced tipping. *In preparation*.
- B. W. Zhang. *Theory and Simulation of Rare Events in Stochastic Systems*. ProQuest, 2008.