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Prototype model for rate-induced tipping (S.
Wieczorek)

A Tipping event occurs when gradual changes to input
levels causes the system to change states.

ẋ = f (x , t) = (x + λ(t))2 − 1, U(x , t) = −

∫

x

f (x̄ , t)dx̄
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Normal form for rate-induced tipping

Simplest model for rate-induced tipping:

ẋ = (x + λ)2 − 1

λ̇ = ǫλ(λmax − λ)

λ(t) =
λmax

2

(

tanh

(

λmaxǫt

2

)

+ 1

)

(Ashwin et al., 2012)
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Prototype model for rate-induced tipping (S.
Wieczorek)

ẋ = (x + λ)2 − 1,
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λ̇ = ǫλ(λmax − λ)
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Adding Noise

Brownian motion of a particle is governed by the
stochastic differential equation:

dXt = f (Xt , t)dt +
√
2DdWt

drift f (Xn, tn); D diffusion.
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Adding Noise

Brownian motion of a particle is governed by the
stochastic differential equation:

dXt = f (Xt , t)dt +
√
2DdWt

drift f (Xn, tn); D diffusion.

This is can be discretised into the form:

Xn+1 = Xn + f (Xn, tn)dt + η
√
2D

√
dt
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Adding Noise

Brownian motion of a particle is governed by the
stochastic differential equation:

dXt = f (Xt , t)dt +
√
2DdWt

drift f (Xn, tn); D diffusion.

This is can be discretised into the form:

Xn+1 = Xn + f (Xn, tn)dt + η
√
2D

√
dt

For the rate-induced example this becomes:

Xn+1 = Xn + ((Xn + λ(tn))
2 − 1)dt + η

√
2D

√
dt
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Fokker-Planck Equation (FPE)

Probability density function of the random variable Xt is
governed by the Fokker-Planck equation (FPE):

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2
−

∂

∂x
(f (x , t)P(x , t))
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How density P(x , t) evolves in potential well U(x , t)
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Noise and rate-induced tipping

Time profile and phase plane of rate-induced tipping along with
the escape rate, ǫ = 1.25, D = 0.008, Prob. of escape = 0.45
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Optimal path definition

The optimal path is the most likely path for getting from x0 to
xT in a time T whilst remaining within the gates of the path.

dt

dt

<<dt<<1

Optimal path

Gate

Take Limits:

x

t

xT

x0
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Variational problem for the optimal path

From the FPE it turns out that we need to maximise the
following functional F :

F = exp

[

U(x0, t0)− U(xT ,T )

2D
−

∫ T

t0

(

ẋ2

4D
+ Vs

)

dτ

]

which gives us a Boundary Value Problem (BVP):

ẍ = 2D
∂Vs

∂x
,

{

x(0) = x0

x(T ) = xT

where

Vs =
1

4D

(

∂U

∂x

)2

−
1

2

∂2U

∂x2
−

1

2D

∂U

∂t

(Zhang, 2008), (Ho and Dai, 2008)
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Variational problem for the optimal path

BVP:

ẍ = 2D
∂Vs

∂x
,

{

x(0) = x0

x(T ) = xT

To find the optimal time for our optimal path we maximise
our F again by keeping Tend free:

F = exp

[

U(x0, t0)− U(xT ,Tend )

2D
−

∫ Tend

t0

(

ẋ2

4D
+Vs

)

dτ

]

this is performed using continuation techniques in AUTO.
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Optimal path for rate-induced tipping

Optimal path of escape for rate-induced tipping along with the
escape rate, ǫ = 1.25, D = 0.008, Prob. of escape = 0.45
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Density plots from simulations

Density plots of simulations started at x0 = −1 at t = −10 and
run until t = 10 for rate-induced system with optimal path
added, ǫ = 1.25, D = 0.008

Time profile Phase plane
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Colour plot for optimal time

Maximising the functional F using continuation techniques
in AUTO gives the optimal time for escape.

Colour contour plots for the optimal time of escape for a range
of ǫ and D values.
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Calculating probability of following a path

Previously,

dt

δ

This time we take dt → 0 but keep δ fixed.

Calculate probability of going from one gate to the next
assuming we are in the gate to start with.

Use instantaneous eigenmodes of the system to
approximate the probability of escape.
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Instantaneous Eigenmodes for FPE

Fokker-Planck equation:

∂P(x , t)

∂t
=

[

D
∂2

∂x2
− f (x , t)

∂

∂x
−

∂f (x , t)

∂x

]

P(x , t)

The FPE can then be written as:

Ṗ = A(t)P

Assume solution to be of the form:

P(t) = x1(t)v1(t) + x2(t)v2(t) + ...

where A(t)vk(t) = λk(t)vk(t)
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Instantaneous Eigenvalue Spectrum

A(t) = D
∂2

∂x2
− f (x , t)

∂

∂x
−

∂f (x , t)

∂x
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Instantaneous Eigenmodes for FPE

Initial xk given by projection of some given initial density:

xk =< wT
k ,P

initial >

where wT
k arise from the adjoint of the matrix A:

Aadj(t) = D
∂2

∂x2
+ f (x , t)

∂

∂x

Subsequent xk are gained through substituting the
assumed solution into the FPE:

ẋ1v1 + x1v̇1 + ẋ2v2 + x2v̇2 + ... = A(x1v1 + x2v2 + ...)

= λ1x1v1 + λ2x2v2 + ...

Multiply this equation on the left by wT
1 and use

wT
i vj = δij to give:

ẋ1 = λ1x1 − wT
1 v̇1x1 − wT

1 v̇2x2 − ...
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Comparison of simulations with eigenmodes

Parameter values: ǫ = 0.7, D = 0.1
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Overview of probability of escape using
simulations
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of escaping potential well for a large range of ǫ and D values



Non-
Autonomous
Instabilities:
Interactions
Between
Noise and

Rate-Induced
Tipping

Paul Ritchie
University of

Exeter
(3rd Year

PhD Student)
Supervised by

Dr. Jan
Sieber

Outline

Introduction

Optimal
Paths

Probability of
escape

Summary

References

Comparison for probability of escape using
different techniques
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either 1 or 3 modes.
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Summary

To calculate the timing of escape we have a BVP that can
be solved.

For probability of escape we can use the mode
approximation of the system.

The timing and probability of escape can be used as an
extra early-warning indicator for tipping events.
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