Self-Organisation in Reaction-Diffusion Systems

Peter Rashkov

University of Exeter Biosciences

22.1.2015

"...Later in the book we discuss in considerable detail various possible mechanisms for generating spatial patterns, including reaction-diffusion systems. I firmly believe that the process here is mechanistic and *not* genetic."

— J. D. Murray, Mathematical Biology

Overview

Morphogenesis

Hair follicle spacing in mice
Analytic properties
Limiting form
Turing space

Outlook & Literature

Mathematical models of morphogenesis

- chemical gradients influence fate of surrounding tissue
- cell differentiation
- tissue and organ formation epidermal appendages (hairs, feathers)
- mathematical model for the chemical basis of morphogenesis
 Turing (1952)
- activator-inhibitor model Gierer and Meinhardt (1972)
- various models for generation of spatial patterns (spatial heterogeneity)

Turing's model

reaction kinetic system

$$(u, v)_t = F(u, v), \quad u, v \in \mathbb{R}, \quad F : \mathbb{R}^2 \to \mathbb{R}^2$$

- steady state $(\hat{u}, \hat{v}) : F(\hat{u}, \hat{v}) = 0$
- asymptotically stable to spatially homogeneous perturbations
- reaction-diffusion system

$$(u, v)_t = D\nabla^2(u, v) + F(u, v)$$

- unstable to spatially heterogeneous perturbations
- ▶ $D \neq I$ diffusion rates for u, v must be different

Gierer and Meinhardt's model

$$u_t - d_u \Delta u = \frac{u^p}{v^q} + \sigma_1(x) - \mu_u u \quad \text{in } [0, T) \times \Omega$$

$$v_t - d_v \Delta v = \frac{u^r}{v^s} + \sigma_2(x) - \mu_v v \quad \text{in } [0, T) \times \Omega$$
(1)

- lacksquare Ω is a bounded smooth domain in \mathbb{R}^n , and $T\in(0,\infty]$
- ▶ initial data $u(0,\cdot), v(0,\cdot) \in L^{\infty}(\Omega)$
- homogeneous Neumann boundary conditions

$$\mathbf{n} \cdot \nabla u = \mathbf{n} \cdot \nabla v = 0$$
 in $\partial \Omega$

- p = r = 2, q = 1, s = 0, Turing space (μ_u, μ_v)
- vast literature on existence and uniqueness of solutions for different p, q, r, s, σ_i

Gierer and Meinhardt's model

(Loading movie...)

Model for hair follicle localisation in mice

wild-type mouse vs. DKK-transgenetic mutant mouse

Model for hair follicle spacing in mice

[Sick et al., 2006]

- WNT signalling pathway in hair follicle localisation
- DKK has inhibitory effect on WNT
- GM kinetics with saturation, Turing instability
- lacktriangle identical production term for activator u & inhibitor v

$$u_{t} - d_{u}\nabla^{2}u = \frac{\rho_{u}}{v + \gamma} \cdot \frac{u^{2}}{1 + \kappa u^{2}} - \mu_{u}u \quad \text{in } [0, T) \times \Omega$$

$$v_{t} - d_{v}\nabla^{2}v = \frac{\rho_{v}}{v + \gamma} \cdot \frac{u^{2}}{1 + \kappa u^{2}} - \mu_{v}v \quad \text{in } [0, T) \times \Omega$$

$$(2)$$

Reaction-kinetic system

- GM type without source terms
- $\qquad \qquad \text{normalise } \rho_u = \rho_v = 1, \quad \mu_u := \frac{\mu_u}{\rho_u}, \quad \mu_v := \frac{\mu_v}{\rho_v}$

$$u_t = \frac{u^2}{(\nu + \gamma)(1 + \kappa u^2)} - \mu_u u$$

$$v_t = \frac{u^2}{(\nu + \gamma)(1 + \kappa u^2)} - \mu_v v$$

- ▶ solution (u, v) of (2) has global existence in L^{∞} on $(0, \infty] \times \Omega$ for strictly positive initial data in L^{∞}
- (0,0) is the <u>unique</u> homogeneous steady state for $\mu_{\nu} < \mu_{u}^{2}$ (corresponds to values used by Sick et al. (2006))

- ▶ solution (u, v) of (2) has global existence in L^{∞} on $(0, \infty] \times \Omega$ for strictly positive initial data in L^{∞}
- (0,0) is the <u>unique</u> homogeneous steady state for $\mu_{\nu} < \mu_{u}^{2}$ (corresponds to values used by Sick et al. (2006))
- it can be shown analytically that u=0, v=0 is local attractor for the model system (2)

- ▶ solution (u, v) of (2) has global existence in L^{∞} on $(0, \infty] \times \Omega$ for strictly positive initial data in L^{∞}
- (0,0) is the <u>unique</u> homogeneous steady state for $\mu_{\nu} < \mu_{u}^{2}$ (corresponds to values used by Sick et al. (2006))
- it can be shown analytically that u = 0, v = 0 is local attractor for the model system (2)
- ▶ Turing instability is *never possible* at (0,0) no matter what d_u, d_v are!

- ▶ solution (u, v) of (2) has global existence in L^{∞} on $(0, \infty] \times \Omega$ for strictly positive initial data in L^{∞}
- (0,0) is the <u>unique</u> homogeneous steady state for $\mu_{\nu} < \mu_{u}^{2}$ (corresponds to values used by Sick et al. (2006))
- it can be shown analytically that u = 0, v = 0 is local attractor for the model system (2)
- ▶ Turing instability is *never possible* at (0,0) no matter what d_u, d_v are!

Limiting form of model system

$$u_{t} - d_{u}\nabla^{2}u = \frac{u^{2}}{v(1 + \kappa u^{2})} - \mu_{u}u \quad \text{in } [0, T) \times \Omega$$

$$v_{t} - d_{v}\nabla^{2}v = \frac{u^{2}}{v(1 + \kappa u^{2})} - \mu_{v}v \quad \text{in } [0, T) \times \Omega$$
(3)

- ho $\gamma = 0, d_u = 1, d_v = d$ approximation when $\gamma \approx 0$
- ▶ solution (u, v) of (3) has global existence in L^{∞} on $(0, \infty] \times \Omega$ for strictly positive initial data in L^{∞}
- a-priori bounds on stationary solutions in t
- find Turing space

Modified model, phase portrait

- $\mu_u^2 \ge \mu_v$: no homogeneous steady state for (3)
- O is a singularity for the reaction kinetic system
- when $\mu_u > \mu_v$, for appropriately chosen initial data u_0, v_0 the solutions of (3)

$$u, v \to 0$$
 uniformly on $\Omega, t \to \infty$

Turing space for fixed Ω , d, κ

subregion V – Turing instability, subregion C – collapsing solutions subregion IV – far-from-equilibrium stationary solutions

Summary

- "modified" GM uniform boundedness, global existence
- conditions for pattern formation in Sick et al. (2006) not relevant
- patterns observed are not due to Turing bifurcation, but convergence to a far-from-equilibrium solution
- sensitivity to initial conditions because of collapsing solutions

Figure: Asymmetric pattern converging to some non-trivial solution branch stemming from some (unknown) steady state

Literature

P. Rashkov.

Remarks on pattern formation in a model for hair follicle spacing. (under review)

P. Rashkov.

Regular and discontinuous solutions in a reaction-diffusion model for hair follicle spacing.

Biomath J. 3(2): 1411111, 2014.

 S. Sick, S. Reinker, J. Timmer, and T. Schlake.
 WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism.

Science 314(5804): 1447-1450, 2006.

Thanks to : S. Dahlke, B. Schmitt (Marburg), J. Sherratt (Heriott-Watt), A. Marciniak-Czochra (Heidelberg)

