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Abstract

Classical ergodic theory assumes that the pre-image of every
measurable set is measurable, and considers measures that
are perfectly preserved by the dynamics. I have recently been
thinking about the scenario where one only has a
limited-resolution view of the state space – formalised as a
sub-sigma-algebra of sets whose pre-images do not
necessarily belong to the same sub-sigma-algebra. And I have
been considering measures that are preserved only on this
sub-sigma-algebra. My original motivation for this comes from
the aim to find the most natural formalism for stationary
measures of coloured-noise-driven processes within the setting
of Ludwig Arnold’s abstract framework for random dynamical
systems. I will present some of my preliminary results on this
topic.
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Invariant and ergodic measures

(X ,X ) – measurable space
f : X → X an (X ,X )-measurable map

An invariant measure of f (or f -invariant measure):
probability measure µ on (X ,X ), s.t.

µ(f−1(A)) = µ(A) ∀ A ∈ X .

Physical interpretation:
let ξ be a random variable taking values in X , and
suppose the probability distribution of ξ is µ;
then the random variable f (ξ) has the same probability
distribution µ.
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Invariant and ergodic measures

An ergodic measure of f (or f -ergodic measure):
f -invariant measure µ for which the following equivalent
statements hold,

any A ∈ X with f−1(A) = A has µ(A) = 0 or 1;

any A ∈ X with f−1(A)
modµ

= A has µ(A) = 0 or 1.

Heuristically: you can’t split X into two µ-non-trivial components
A and X \ A that “stay separate” under f .
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Markov operators

Given f : X → X with invariant measure µ, we can define the
associated “Koopman operator” Pf ,µ (defined shortly).

Koopman operators are the “trivial” or “deterministic” case of
Markov operators.

MOs are a way to describe “transition probabilities” for a
random process that takes you from “the current” state to
“the next” state. . .



Classical ergodic theory
Restrictedly invariant measures

Structure of invariant and restrictedly invariant measures

Invariant and ergodic measures
Markov operators
Koopman operators

Markov operators

Space of possible states:
– measurable space (X ,X ),
– equipped with a probability measure µ, which represents

the probability distribution for your “current” state.

Some notation:
Let L1(X ,X , µ) =

{
g : X → R :

∫
X |g|dµ <∞

}
.

For each g ∈ L1(X ,X , µ), let

[g]µ = {g̃ : X → R : g̃
µ-a.s.
= g}.

Let L1(X ,X , µ) = {[g]µ : g ∈ L1(X ,X , µ)}.

We define
∫

X [g]µ dµ =
∫

X g dµ. Also, L1(X ,X , µ) is a vector
space, under the natural operations defined such that

λ1[g1]µ + λ2[g2]µ = [λ1g1 + λ2g2]µ.
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Markov operators

A Markov operator is a function P : L1(X ,X , µ)→ L1(X ,X , µ)
satisfying certain rules described shortly; heuristically:

for A ∈ X , for h ∈ P([1A]µ), h(x) represents

Prob( next state ∈ A | current state = x ) ;

more generally, for h ∈ P([g]µ), h(x) represents

E[ g(next state) | current state = x ].

These statements are to be understood “for µ-almost all x”. So
Markov operators only give a “fuzzy description” of
transition probabilities.
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Markov operators: the definition

Given a prob. space (X ,X , µ), a Markov operator on
L1(X ,X , µ) is a function P : L1(X ,X , µ)→ L1(X ,X , µ)
satisfying the four requirements:

linearity – P(λ1g1 + λ2g2) = (λ1Pg1) + (λ2Pg2);

monotonicity – g
µ-a.s.
≥ 0 ⇒ Pg

µ-a.s.
≥ 0;

preserves constant functions – P([1]µ) = [1]µ;
for each g ∈ L1(X ,X , µ),∫

X
Pg dµ =

∫
X

g dµ.

This last point means: prior to the knowledge of the current
state, the probability distribution of the next state is the
same as the probability distribution of the current state.



Classical ergodic theory
Restrictedly invariant measures

Structure of invariant and restrictedly invariant measures

Invariant and ergodic measures
Markov operators
Koopman operators

Ergodic Markov operators

A Markov operator P on L1(X ,X , µ) is ergodic if any A ∈ X
with

P([1A]µ) = [1A]µ

has µ(A) = 0 or 1.

Heuristic meaning of “P([1A]µ) = [1A]µ”:

Prob( next state ∈ A | current state ∈ A ) = 1
Prob( next state ∈ A | current state /∈ A ) = 0.
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Koopman operators

Heuristically, a Koopman operator is a MO for which the
process taking you from “the current” state to “the next”
state is a deterministic map.
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Koopman operators

measurable space (X ,X )
measurable map f : X → X
f -invariant measure µ

The corresponding Koopman operator is the Markov operator
Pf ,µ on L1(X ,X , µ) defined by

Pf ,µ([g]µ) = [g ◦ f ]µ ∀ g ∈ L1(X ,X , µ).

(I will now start to drop notational distinctions between
functions and their µ-equivalence classes.) So for A ∈ X ,

(Pf ,µ1A)(x) = “Prob( next state ∈ A | current state = x )”

µ-a.s.
=

{
1 f (x) ∈ A
0 f (x) /∈ A.
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Invariance and ergodicity in terms of KOs

Remark. Given (X ,X ), measurable map f : X → X , and an
arbitrary probability measure µ,

we can define a Markov operator Pf ,µ on L1(X ,X , µ) by

Pf ,µ([g]µ) = [g ◦ f ]µ ∀ g ∈ L1(X ,X , µ)

if and only if µ is f -invariant;

assuming µ is f -invariant, the Koopman operator Pf ,µ is
ergodic if and only if µ is f -ergodic.
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Sub-σ-algebras: “limited access to detail”

Given (X ,X ), a sub-σ-algebra of X is a σ-algebra X̃ on X with
X̃ ⊂ X .
→ X̃ represents a “lower-resolution description” of the set of

states X .

Example scenarios:
(X ,X ) is the space of all possible states of the global
climate; but X̃ represents just a finite number of variables
describing the climate, e.g. global mean temperature and
global mean CO2 concentration.
(X ,X ) is the space of all possible bi-infinite-time paths of a
random walk on a compact group; but X̃ represents just
the past and present, not the unseen future.
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“Non-trivial” transition probabilities

Given map f : X → X and prob. meas. µ on (X ,X ),
→ suppose “we can only see” the sub-σ-algebra X̃ ;
→ then the “transition probabilities”

µ( f−1(A) | X̃ )(x), x ∈ X ,A ∈ X̃

are no longer “deterministic”, i.e. they can take values in
the open interval (0,1).

E.g. if I can only see that this year’s average GMT is 14 ◦C,
the probability that next year’s average GMT will lie between
14 ◦C and 14.5 ◦C is not 0 or 1 – even if the underlying
dynamics of the global climate is deterministic!
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“Non-trivial” transition probabilities

Question: When can we describe these “transition
probabilities” by a Markov operator?

I.e. when is there a Markov operator Pf ,µ,X̃ on L1(X , X̃ , µ|X̃ )
such that

Pf ,µ,X̃g = Eµ[g ◦ f |X̃ ]

for all X̃ -measurable functions g : X → R with
∫

X |g|dµ <∞?

Answer. This Markov operator exists if and only if

µ(f−1(A)) = µ(A) ∀ A ∈ X̃ .
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Restrictedly invariant and ergodic measures

Let
(X ,X ) be a measurable space,
X̃ be a sub-σ-algebra of X ,
f : X → X be an (X , X̃ )-measurable function.
→ In practice, f will be (X ,X )-measurable, but this is stronger

than needed.

An X̃ -restrictedly f -invariant measure is a probability
measure µ on (X ,X ) s.t.

µ(f−1(A)) = µ(A) ∀ A ∈ X̃ .

Physical interpretation:
let ξ be a random variable taking values in X , and
suppose the probability distribution of ξ is µ;
then Prob( f (ξ) ∈ A ) = Prob( ξ ∈ A ) = µ(A) for all A ∈ X̃ .
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Restrictedly invariant and ergodic measures

Given X̃ -restrictedly f -invariant measure µ, the following are
equivalent:

the “Koopman” operator Pf ,µ,X̃ on L1(X , X̃ , µ|X̃ ),

Pf ,µ,X̃g = Eµ[g ◦ f |X̃ ],

is ergodic;

any A ∈ X̃ with f−1(A)
modµ

= A has µ(A) = 0 or 1.
An X̃ -restrictedly f -ergodic measure is an X̃ -restrictedly
f -invariant measure µ for which the above equivalent
statements hold.

Remark. Suppose f is (X ,X )-measurable. Then every
f -invariant measure is X̃ -restrictedly f -invariant, and every
f -ergodic measure is X̃ -restrictedly f -ergodic.
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I asked on MathOverflow
(https://mathoverflow.net/questions/351548) about
whether these “restrictedly invariant measures” have ever been
studied before. This was over 2 months ago, and I have still
received no answers (but also no upvotes).

There are potentially many questions that one can ask about
RIMs; one that I have considered is the “structure” of the set of
X̃ -RIMs of a map f .

https://mathoverflow.net/questions/351548
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Convex sets and extreme points

Let V be a real vector space.
An open line segment is a set of the form

L{u,v} := {λu + (1− λ)v : λ ∈ (0,1)}

for two distinct points u,v ∈ V .

A set C ⊂ V is convex if for any two distinct points
u,v ∈ C, we have L{u,v} ⊂ C.
→ Important: Vacuously, a singleton is convex!

An extreme point of a convex set C ⊂ V is a point x ∈ C
such that there does not exist an open line segment L with
x ∈ L ⊂ C.

Write extr(C) := {extreme points of C}.
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Convex sets and extreme points

Examples:
(a) closed solid square; (b) closed disk; (c) open disk.

Extreme points: (a) the four corners; (b) all points on the
circumference; (c) no extreme points.
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Affine maps

Let V , W be real vector spaces;
let CV ⊂ V and CW ⊂W be convex sets.

A function T : CV → CW is affine if

T (λu + (1− λ)v) = λT (u) + (1− λ)T (v)

for all u,v ∈ CV and λ ∈ (0,1).

Affine maps T : CV → CW have the properties that
(1) images of convex sets are convex;
(2) pre-images of convex sets are convex;
(3) for any w ∈ extr(CW ), for any v ∈ T−1({w}),

v ∈ extr(CV ) ⇐⇒ v ∈ extr(T−1({w})).
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Structure of classical invariant measures

(X ,X ) – measurable space.
Vector space RX = {functions X → R}.

The set

Pr(X ,X ) = {probability measures on (X ,X )}

is a convex subset of RX :

µ1, µ2 ∈ Pr(X ,X ), λ ∈ (0,1) =⇒ λµ1 + (1− λ)µ2 ∈ Pr(X ,X ).

Given (X ,X )-measurable map f : X → X , the set

Inv(f ) := {f -invariant measures} ⊂ Pr(X ,X )

is convex.
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Structure of classical invariant measures

Proposition

The set of f -ergodic measures is precisely extr(Inv(f )).

“extreme⇒ergodic” is the easy direction (by contrapositive):

suppose f−1(A) = A and µ(A) ∈ (0,1);
the measures µ1 = µ( · |A) and µ2 = µ( · |X \ A) are distinct
f -invariant measures;
taking λ = µ(A), we have µ = λµ1 + (1− λ)µ2.

“ergodic⇒extreme” is harder (but not extremely difficult).
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Example

Let X = {1,2,3,4} (with X consisting of all subsets of X ).
Let f = (2 4).

µ ∈ Pr(X ,X ) is f -invariant if and only if µ({2}) = µ({4}).
Therefore Inv(f ) is a closed solid triangle:

RX → R2

µ 7→ (µ({1}) , µ({3}) )

identifies Inv(f ) with the closed solid triangle C with corners
(0,0), (0,1), (1,0).
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Example

The f -ergodic measures are precisely the three corner points of
the triangle Inv(f ):

δ1, δ3,
1
2(δ2 + δ4)
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Corollary for “skew-product” maps

Let (X ,X ) be a measurable space,
let Y be a sub-σ-algebra of X ,
and let f : X → X be both (X ,X )- and (Y,Y)-measurable.

[This is the most general form of a skew-product map:
models joint evolution of a “driving process” and a “driven
process”;
hypothetical example: human activity and the climate;
the sub-σ-algebra Y represents just the driving process.]

Fix ν ∈ Pr(X ,Y) that is ergodic w.r.t. f as a map on (X ,Y).

[I.e. the driving is an ergodic process.]
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Corollary for “skew-product” maps

Let C = {µ ∈ Pr(X ,X ) : µ is f -invariant and µ|Y = ν}.

[I.e. C is the set of all those invariant measures of the joint
driver-and-driven dynamics that are compatible with the
pre-fixed ergodic measure ν of the driving dynamics.]

Corollary

A measure µ ∈ C is f -ergodic if and only if µ ∈ extr(C).

Pf. Immediate by property (3) of affine maps, since the map

Inv(X ,X )(f )→ Inv(X ,Y)(f )

µ 7→ µ|Y

is affine.
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My original motivation behind RIMs

Trajectories of dynamical systems perturbed by stationary white
noise can be described by “Markov transition probabilities” (a
“non-fuzzy version”, as opposed to the “fuzzy version” given by
Markov operators).

One can develop ergodic theory of Markov transition
probabilities, analogous to the ergodic theory of maps (with
“stationary measures” in place of “invariant measures”).

In [Crauel 1991, Hairer 2005], stationary measures of systems
driven by “coloured noise” have been introduced.
→ Basic idea: consider joint Markov transition probabilities of

the driving noise and the driven system (a “stochastic
version” of the skew-product setup).
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My original motivation behind RIMs

My aim: abstractly formalise this within a general framework of
“filtered random dynamical systems” [Arnold 1998]
→ In my formalism, the non-fuzzy Markov transition

probabilities get replaced by “Koopman” operators
associated with RIMs.
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My original motivation behind RIMs

“ergodic⇔extreme”, and its corollary for skew-product maps,
easily extend to non-fuzzy Markov transition probabilities.

Hence ergodic measures of coloured-noise-driven systems are
the extreme points of the set of stationary measures.
→ It is important that my “fuzzied” abstract formalism still

maintains this property!

So I was hoping that “ergodic⇔extreme” and its corollary would
also easily extend to restrictedly invariant measures . . .
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Extreme implies ergodic

(X ,X ), sub-σ-algebra X̃ ⊂ X ,
(X , X̃ )-measurable map f : X → X

Let InvX̃ (f ) ⊂ Pr(X ,X ) be the set of all X̃ -restrictedly f -invariant
measures. Note that InvX̃ (f ) is convex.

Proposition

Let µ ∈ InvX̃ (f ). Suppose there exists a σ-algebra D with
X̃ ⊂ D ⊂ X

such that µ|D is an extreme point of {µ′|D : µ′ ∈ InvX̃ (f )}. Then
µ is X̃ -restrictedly f -ergodic.

(Proof essentially identical to the classical case.)
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What about a converse? (Ergodic⇒extreme?)

Let X = {1,2,3,4}, with X consisting of all subsets of X . Let

f (x) = x + 1 mod 4.

(So the only f -invariant measure is 1
4(δ1 + δ2 + δ3 + δ4).)

Let X̃ = {∅,X , {1,2}, {3,4}}. So,
f−1X̃ = {∅,X , {1,4}, {3,2}}.

Given µ ∈ Pr(X ,X ),
µ ∈ InvX̃ (f ) if and only if µ({2}) = µ({4});
µ ∈ InvX̃ (f ) \ ErgX̃ (f ) if and only if{

µ({2}) = µ({4}) = 0
µ({1}), µ({3}) 6= 0.
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What about a converse? (Ergodic⇒extreme?)

So InvX̃ (f ) is once again the triangle:

But ErgX̃ (f ) = InvX̃ (f ) \ {open line segment from δ1 to δ3}.
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What about a converse? (Ergodic⇒extreme?)

Given any µ in the interior of the triangle InvX̃ (f ), there is
no non-trivial σ-algebra D on X for which µ|D is an extreme
point of {µ′|D : µ′ ∈ InvX̃ (f )}.

Conclusion. “ergodic⇒extreme” probably admits no nice
extension to the setting of restrictedly invariant measures.

But, for my original goal, it is the corollary for skew-product
maps that I need to extend to the RIM setting.
→ This does admit such an extension [that arguably fails on

being “nice”, but is still enough for what I wanted].
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Preliminary: conditional independence

Let (Ω,F ,P) be a probability space. Recall: E1,E2 ∈ F are
P-independent if P(E1 ∩ E2) = P(E1)P(E2).

Fix a sub-σ-algebra H of F . Two events E1,E2 ∈ F are
conditionally P-independent given H if

P(E1 ∩ E2|H)(ω) = P(E1|H)(ω)P(E2|H)(ω)

“for P-almost all ω”. Notation: E1⊥P E2 |H.

For two sub-σ-algebras G1,G2 of F , we say that

G1⊥P G2 |H

if for all E1 ∈ G1, E2 ∈ G2, E1⊥P E2 |H.
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Result for skew-product maps

Let (X ,X ) be a measurable space, with sub-σ-algebras

X̃ ⊂ X Y ⊂ X Ỹ ⊂ Y ∩ X̃ .

[Illustrative hypothetical model:
(X ,X ) represents global climate and human activity, over a
given year

– possibly combined with a “noise process” (ζn)n≥0, over
all time from that year onwards.
Y represents just human activity over a given year – again
combined with (ζn)n≥0 in the “noisy” case.
Ỹ represents total CO2 emission from human activity in a
given year.
X̃ represents total CO2 emission from human activity in a
given year together with average GMT for that year.]
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Result for skew-product maps

f : X → X

Suppose f is (Y, Ỹ)-measurable;
fix ν ∈ Pr(X ,Y) that is Ỹ-restrictedly f -ergodic.
→ In practice, f will probably be (Y,Y)-measurable,
→ and ν will probably be a classical ergodic measure of f as a

map on (X ,Y).

[Human activity from year to year is modelled as some ergodic
oscillation (e.g. quasiperiodic)

– possibly perturbed by (ζn)n≥0 modelled as ergodic
stationary noise.]

Suppose f is also (σ(Y ∪ X̃ ), X̃ )-measurable. ←−strong!

[Next year’s average GMT is determined by the combination of
this year’s average GMT, this year’s human activity, and
possibly the relevant “noise” (ζ0, ζ1).]
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Result for skew-product maps

C := {µ ∈ Pr(X ,X ) : µ ∈ InvX̃ (f ), µ|Y = ν, and Y ⊥µ X̃ | Ỹ}.

[A measure µ ∈ C is a joint probability distribution of climate
and human behaviour over a year (together with the “noise”
(ζn)n≥0 in the “noisy” case) –

compatible with the pre-established ergodic behaviour of
human activity and the “noise” (ζn)n≥0;
yields the same joint probability distribution for next year’s
average GMT and total CO2 emission as this year’s;

(this doesn’t automatically guarantee the same
distribution across three or more consecutive years!)
given the knowledge of a year’s total CO2 emission, all
further details of human activity in that year – as well as all
details of the “noise” from that year onwards – are
probabilistically independent of that year’s average GMT.]
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Result for skew-product maps

Lemma
C is convex.

More specifically:
C0 := {µ ∈ Pr(X ,X ) : µ|Y = ν and Y ⊥µ X̃ | Ỹ} is convex
(nothing to do with dynamics);
C is just C0 ∩ InvX̃ (f ).

Theorem

A measure µ ∈ C is X̃ -restrictedly f -ergodic if and only if µ|X̃ is
an extreme point of {µ′|X̃ : µ′ ∈ C}.

We recover the classical “Corollary for skew-product maps” by
taking X̃ = X and Ỹ = Y.
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Result for skew-product maps

Remark. Another result of classical ergodic theory: distinct
f -ergodic measures are mutually singular.
→ does not generalise to RIMs (clear from earlier example);
→ but in the above skew-product setting: distinct
X̃ -restrictedly f -ergodic measures in C are mutually
singular.
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Thank you.
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