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BRAIN MODELLING?

Figure adapted from Siettos, Constantinos, and Jens Starke. "Multiscale 

modeling of brain dynamics: from single neurons and networks to 

mathematical tools." Wiley Interdisciplinary Reviews: Systems Biology and 

Medicine 8.5 (2016): 438-458.



THE NEURAL FIELD EQUATION

 Phenomenological model of “cortical activity”, 𝑢

 Firing rate 𝑓 typically sigmoidal

 Connectivity described by 𝑤

Amari, Shun-ichi. "Dynamics of pattern formation in lateral-inhibition type neural fields." Biological cybernetics 27.2 (1977): 77-87.



WHY STUDY THALAMOCORTICAL MODELS?

 The thalamus “relays” motor and sensory 

signals to the cortex

 Rebound currents (T-type calcium current) 

occur in the thalamus

 Rich dynamics in models

Figure adapted from Rinzel, J., et al. "Propagating activity patterns in large-

scale inhibitory neuronal networks." Science 279.5355 (1998): 1351-1355.

Yew,  Alice C., D. H. Terman, and G. Bard Ermentrout. "Propagating activity patterns in thalamic 

neuronal networks." SIAM Journal on Applied Mathematics 61.5 (2001): 1578-1604.
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𝑡



WHAT IS A REBOUND CURRENT?

 Hyperpolarisation causes a firing event (post-inhibitory rebound)

 Hyperpolarisation removes the inactivation of the current

 When voltage reaches the rebound threshold, the rebound current activates

 This results in a large voltage depolarization

resting potential

hyperpolarised tissue

rebound threshold

firing threshold



MODEL INGREDIENTS

 A voltage description including the relevant rebound current

 Tissue connectivity 



THE MODEL

Leak current Rebound current Synaptic current

Heaviside 

step-function



THE MODEL

Heaviside 

step-function



THE MODEL

Heaviside 

step-function

Purely inhibitory 

connectivity kernel



2-D PATTERNING

 Travelling patterns in 

two spatial dimensions

Purely inhibitory connectivity kernel



WHAT IS SPATIAL SYNCHRONY?



THE SYNCHRONOUS PERIODIC ORBIT

 The equations governing spatially independent solutions



THE SYNCHRONOUS PERIODIC ORBIT

 Phase space divided into three linear regions: 

 The switching conditions and the periodicity conditions

𝑇1

𝑇2

𝑇3

𝑇4



THE SYNCHRONOUS PERIODIC ORBIT – ANALYTICAL RESULTS

Analytical



THE SYNCHRONOUS PERIODIC ORBIT – ANALYTICAL AND 

NUMERICAL COMPARISON

Numerical

Analytical



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

+
proportional to



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

 Discontinuities in the vector field introduce discontinuities in the perturbations



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – LOCAL ENTRIES

 For a time-dependent dynamical system

with a switch in the dynamics at time          ,  

The Model Equations

Local

Non-local

Müller, Peter C. "Calculation of Lyapunov exponents for dynamic systems with discontinuities." Chaos, Solitons & Fractals 5.9 (1995): 1671-1681.

Nicks, Rachel, Lucie Chambon, and Stephen Coombes. "Clusters in nonsmooth oscillator networks." Physical Review E 97.3 (2018): 032213.



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – LOCAL ENTRIES

 For the rebound model, 
The Model Equations

Local

Non-local



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – NON-LOCAL ENTRIES

 The non-local part is in

 Linearise and make the ansatz                                to obtain

 Then use                                           to obtain

 The saltation rule relating perturbations before and after a switch is  

Non-local

The Model Equations



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – NON-LOCAL ENTRIES

 The saltation rule relating perturbations before and after a switch is

Non-local

The Model Equations



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

DETERMINING THE MONODROMY MATRIX

 The perturbation after a period, Δ, is given by

where
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Figure adapted from Kuznetsov,

Yuri A. Elements of applied

bifurcation theory. Vol. 112. Springer

Science & Business Media,2013.



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

AN UNSTABLE ORBIT

 The eigenvalues of Ψ determine the stability of the orbit



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS 



THE SYNCHRONOUS PERIODIC ORBIT

NUMERICAL SIMULATION

On-cycle initial conditions Off-cycle initial conditions

Rinzel, J., et al. "Propagating activity patterns in large-scale inhibitory 

neuronal networks." Science 279.5355 (1998): 1351-1355.



PERIODIC ORBIT CONTINUATION



SPATIALLY PERIODIC TRAVELLING WAVES

 The model supports travelling wave solutions

 Move to the co-moving frame, 𝜉 = 𝑥 − 𝑐𝑡

 4 switching events over a period 𝜙, at 𝜉 = 𝜉1 , 𝜉2, 𝜉3,𝜙 topologically equivalent to 𝑡 = 𝑇1 , 𝑇2 , 𝑇3 , 𝑇4 for 

synchronous orbit



𝛼 = 0.07ms-1

𝛼 = 0.10ms-1

𝛼 = 0.20ms-1

SPATIALLY PERIODIC TRAVELLING WAVES

DISPERSION RELATION

 Dispersion curve, 𝑐 = 𝑐(𝜙)



SPATIALLY PERIODIC TRAVELLING WAVES – STABILITY

FINDING THE EVANS FUNCTION

 Perturb the travelling waves

𝑧 𝜉, 𝑡 = 𝑧 𝜉 + 𝛿𝑧(𝜉, 𝑡)

 Consider separable perturbations

𝛿𝑧 𝜉, 𝑡 = 𝑒𝜆𝑡𝛿𝑧(𝜉)

 Generate a linear system in the perturbations

Γ 𝜆 − 𝐼4 𝒙 = 𝟎

where 𝒙 = (𝛿𝑣 𝜉1 , 𝛿𝑣 𝜉2 , 𝛿𝑣 𝜉3
− , 𝛿𝑣 𝜙− ) and demand non-trivial perturbations



SPATIALLY PERIODIC TRAVELLING WAVES – STABILITY 

FINDING THE EVANS FUNCTION

 Then the Evans function is 

 The zeros of the Evans function are the eigenvalues 𝜆 to the stability problem

 Decompose

Must vanish for non-

trivial perturbations!



SPATIALLY PERIODIC TRAVELLING WAVES – STABILITY

 Dispersion curve, 𝑐 = 𝑐(𝜙)

 Stability changes shown via 

Evans function plots

𝛼 = 0.07ms-1

𝛼 = 0.10ms-1

𝛼 = 0.20ms-1



CONCLUSIONS

 Augmented neural field-type model with ionic currents relevant at a sub-cortical scale

 Non-smooth, piecewise linear model 

 Allows for explicit construction of solutions

 Facilitates analytical linear stability analysis

 Post-inhibitory rebound phenomenon seen biologically is successfully captured by the model

 Spatially synchronous periodic orbit

 Good agreement between theory and simulation

 Numerical continuation

 Periodic travelling waves 

 Construction

 Dispersion curve, 𝑐 = 𝑐(𝜙)

 Stability analysis via an Evans function approach
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