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IN TODAY’S TALK

 Introduction

 Brain modelling motivation

 Neural field equation

 Thalamic model with a rebound current

 Introducing the model

 2-D patterning

 Spatial synchrony

 Spatially periodic travelling waves

 Continuation of solutions



BRAIN MODELLING?

Figure adapted from Siettos, Constantinos, and Jens Starke. "Multiscale 

modeling of brain dynamics: from single neurons and networks to 

mathematical tools." Wiley Interdisciplinary Reviews: Systems Biology and 

Medicine 8.5 (2016): 438-458.



THE NEURAL FIELD EQUATION

 Phenomenological model of “cortical activity”, 𝑢

 Firing rate 𝑓 typically sigmoidal

 Connectivity described by 𝑤

Amari, Shun-ichi. "Dynamics of pattern formation in lateral-inhibition type neural fields." Biological cybernetics 27.2 (1977): 77-87.



WHY STUDY THALAMOCORTICAL MODELS?

 The thalamus “relays” motor and sensory 

signals to the cortex

 Rebound currents (T-type calcium current) 

occur in the thalamus

 Rich dynamics in models

Figure adapted from Rinzel, J., et al. "Propagating activity patterns in large-

scale inhibitory neuronal networks." Science 279.5355 (1998): 1351-1355.

Yew,  Alice C., D. H. Terman, and G. Bard Ermentrout. "Propagating activity patterns in thalamic 

neuronal networks." SIAM Journal on Applied Mathematics 61.5 (2001): 1578-1604.

𝑥

𝑡



WHAT IS A REBOUND CURRENT?

 Hyperpolarisation causes a firing event (post-inhibitory rebound)

 Hyperpolarisation removes the inactivation of the current

 When voltage reaches the rebound threshold, the rebound current activates

 This results in a large voltage depolarization

resting potential

hyperpolarised tissue

rebound threshold

firing threshold



MODEL INGREDIENTS

 A voltage description including the relevant rebound current

 Tissue connectivity 



THE MODEL

Leak current Rebound current Synaptic current

Heaviside 

step-function



THE MODEL
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THE MODEL
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2-D PATTERNING

 Travelling patterns in 

two spatial dimensions

Purely inhibitory connectivity kernel



WHAT IS SPATIAL SYNCHRONY?



THE SYNCHRONOUS PERIODIC ORBIT

 The equations governing spatially independent solutions



THE SYNCHRONOUS PERIODIC ORBIT

 Phase space divided into three linear regions: 

 The switching conditions and the periodicity conditions

𝑇1

𝑇2

𝑇3

𝑇4



THE SYNCHRONOUS PERIODIC ORBIT – ANALYTICAL RESULTS

Analytical



THE SYNCHRONOUS PERIODIC ORBIT – ANALYTICAL AND 

NUMERICAL COMPARISON

Numerical

Analytical



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

+
proportional to



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

 Discontinuities in the vector field introduce discontinuities in the perturbations



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – LOCAL ENTRIES

 For a time-dependent dynamical system

with a switch in the dynamics at time          ,  

The Model Equations

Local

Non-local

Müller, Peter C. "Calculation of Lyapunov exponents for dynamic systems with discontinuities." Chaos, Solitons & Fractals 5.9 (1995): 1671-1681.

Nicks, Rachel, Lucie Chambon, and Stephen Coombes. "Clusters in nonsmooth oscillator networks." Physical Review E 97.3 (2018): 032213.



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – LOCAL ENTRIES

 For the rebound model, 
The Model Equations

Local

Non-local



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – NON-LOCAL ENTRIES

 The non-local part is in

 Linearise and make the ansatz                                to obtain

 Then use                                           to obtain

 The saltation rule relating perturbations before and after a switch is  

Non-local

The Model Equations



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

SALTATION MATRICES – NON-LOCAL ENTRIES

 The saltation rule relating perturbations before and after a switch is

Non-local

The Model Equations



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

DETERMINING THE MONODROMY MATRIX

 The perturbation after a period, Δ, is given by

where
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Figure adapted from Kuznetsov,

Yuri A. Elements of applied

bifurcation theory. Vol. 112. Springer

Science & Business Media,2013.



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS

AN UNSTABLE ORBIT

 The eigenvalues of Ψ determine the stability of the orbit



THE SYNCHRONOUS PERIODIC ORBIT – STABILITY ANALYSIS 



THE SYNCHRONOUS PERIODIC ORBIT

NUMERICAL SIMULATION

On-cycle initial conditions Off-cycle initial conditions

Rinzel, J., et al. "Propagating activity patterns in large-scale inhibitory 

neuronal networks." Science 279.5355 (1998): 1351-1355.



PERIODIC ORBIT CONTINUATION



SPATIALLY PERIODIC TRAVELLING WAVES

 The model supports travelling wave solutions

 Move to the co-moving frame, 𝜉 = 𝑥 − 𝑐𝑡

 4 switching events over a period 𝜙, at 𝜉 = 𝜉1 , 𝜉2, 𝜉3,𝜙 topologically equivalent to 𝑡 = 𝑇1 , 𝑇2 , 𝑇3 , 𝑇4 for 

synchronous orbit



𝛼 = 0.07ms-1

𝛼 = 0.10ms-1

𝛼 = 0.20ms-1

SPATIALLY PERIODIC TRAVELLING WAVES

DISPERSION RELATION

 Dispersion curve, 𝑐 = 𝑐(𝜙)



SPATIALLY PERIODIC TRAVELLING WAVES – STABILITY

FINDING THE EVANS FUNCTION

 Perturb the travelling waves

𝑧 𝜉, 𝑡 = 𝑧 𝜉 + 𝛿𝑧(𝜉, 𝑡)

 Consider separable perturbations

𝛿𝑧 𝜉, 𝑡 = 𝑒𝜆𝑡𝛿𝑧(𝜉)

 Generate a linear system in the perturbations

Γ 𝜆 − 𝐼4 𝒙 = 𝟎

where 𝒙 = (𝛿𝑣 𝜉1 , 𝛿𝑣 𝜉2 , 𝛿𝑣 𝜉3
− , 𝛿𝑣 𝜙− ) and demand non-trivial perturbations



SPATIALLY PERIODIC TRAVELLING WAVES – STABILITY 

FINDING THE EVANS FUNCTION

 Then the Evans function is 

 The zeros of the Evans function are the eigenvalues 𝜆 to the stability problem

 Decompose

Must vanish for non-

trivial perturbations!



SPATIALLY PERIODIC TRAVELLING WAVES – STABILITY

 Dispersion curve, 𝑐 = 𝑐(𝜙)

 Stability changes shown via 

Evans function plots

𝛼 = 0.07ms-1

𝛼 = 0.10ms-1

𝛼 = 0.20ms-1



CONCLUSIONS

 Augmented neural field-type model with ionic currents relevant at a sub-cortical scale

 Non-smooth, piecewise linear model 

 Allows for explicit construction of solutions

 Facilitates analytical linear stability analysis

 Post-inhibitory rebound phenomenon seen biologically is successfully captured by the model

 Spatially synchronous periodic orbit

 Good agreement between theory and simulation

 Numerical continuation

 Periodic travelling waves 

 Construction

 Dispersion curve, 𝑐 = 𝑐(𝜙)

 Stability analysis via an Evans function approach
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Stephen Coombes Rüdiger Thul

Yi Ming Lai
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