Outline	Model Definition	Motivation	Methods	Results
	00000	00	000000	

Dynamics Reading Group

Dynamical Properties of Markov Chain Cardiac Ion Channel

Tomáš Starý

advised by

Professor Vadim Biktashev

College of Engineering, Mathematics and Physical Sciences

Wed 7 May, 2014

イロト イボト イヨト イヨト

Outline	Model Definition	Motivation	Methods	Results
	00000	00	000000	

- Model Definition
 - Cellular Membrane
 - Ion Channel
 - Sodium Channel Markov Chain
- Motivation
 - Numerical Instability Issues
 - Exponential Time Differentiation Rush, Larsen (1978)

3 Methods

- Generalized Rush-Larsen (gRL)
- Tabulation (tab.)
- Hybrid method (hyb.): Operator Splitting

4 Results

• • = • • = •

Outline	Model Definition ●○○○○	Motivation 00	Methods 000000	Results
Cellular	Membrane			

Cellular membrane potential governed by equation:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{C_m} \left[I_{\mathrm{stim}}(t) - \sum_{k=1}^N I_k(V, \vec{X}, P_{\mathrm{open}}) \right]$$
(1)

- V membrane potential
- C_m membrane capacitance
- $I_{\text{stim}}(t)$ external stimulation current
- $I_k(V, \vec{X}, P_{open})$ specific ion current
- $\vec{X}(t)$ ionic concentrations

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Model Definition ○●○○○	Motivation 00	Methods 000000	Results
lon (Channel $(1/2)$			

From the Ohm's law:

$$I_k = G_k P_{\text{open}}(t) [V(t) - E_k(X_k)]$$
(2)

- G_k maximum conductance of specific ion current
- $E_k(X_k)$ equilibrium voltage for specific ion (Nerst potential)
- *P*_{open}(*t*) open probability defined by one of the following ion channel models:
 - Gate model
 - Markov chain model

イロト イポト イヨト イヨト 三日

Outline	Model Definition ○○●○○	Motivation 00	Methods 000000	Results
Ion Channe	l (2/2)			

• Gate model – Hodgkin, Huxley (1952)

$$\frac{\mathrm{d}y_i}{\mathrm{d}t} = \alpha_{yi}(V)(1-y_i) - \beta_{yi}(V)y_i \tag{3}$$
$$P_{\mathrm{open}}(t) = \prod_{i=1}^N y_i(t) \tag{4}$$

where y_i represents hypothetical gates; and transition rates $(\alpha_{yi}(V), \beta_{yi}(V))$ are determined experimentally.

Markov chain model

$$\frac{\mathrm{d}\vec{u}}{\mathrm{d}t} = \boldsymbol{A}(V)\vec{u} \tag{5}$$
$$P_{\mathrm{open}}(t) = u_1(t) \tag{6}$$

where u_1 is open (conductive) state; and transition rates matrix (A(V)) is determined experimentally.

Tomáš Starý

Outline	Model Definition	Motivation ●○	Methods 000000	Results

Numerical Instability Issues

Figure : MC I_{Na} ion channel simulation driven by Action potential (V) at time step h = 0.001, 0.043 and 0.044 ms.

The exponential time differentiation scheme developed by Rush and Larsen (1978) is efficient method for solving gate model:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \alpha(V)(1-y) - \beta(V)y \tag{7}$$

イロト 不得 トイヨト イヨト 二日

considering $\alpha(V)$ and $\beta(V)$ constants we can obtain analytical solution:

$$y^{n+1} = y_{\infty}(V) - [y_{\infty}(V) - y^n] \exp(-h/\tau)$$
 (8)

where

- $y_{\infty}(V) = \alpha(V)/[\alpha(V) + \beta(V)]$ "steady-state" solution
- $\tau = 1/[\alpha(V) + \beta(V)]$ "time constant"

•
$$h = t_{n+1} - t_n$$
 – time step

• $y^n = y(t_n)$

Outline

Model Definition

Motivatio

Methods

Results

Generalized Rush-Larsen (gRL)

We can extend the exponential time differentiation for given Markov chain $d\vec{u}/dt = \mathbf{A}(V(t))\vec{u}$ as:

$$\vec{u}^{n+1} = \exp\left[\boldsymbol{A}(V(t_n))h\right] \vec{u}^n = \boldsymbol{T}(V)\vec{u}^n \tag{9}$$

Matrix **T** can be expanded using the definition of the exponential:

$$T = \exp(\mathbf{A}h) = \sum_{j=0}^{\infty} \frac{(\mathbf{A}h)^j}{j!} = \sum_{j=0}^{\infty} \frac{(\mathbf{S}\Lambda\mathbf{S}^{-1})^j h^j}{j!} = \sum_{j=0}^{\infty} \frac{(\mathbf{S}\Lambda\mathbf{S}^{-1}\mathbf{S}\Lambda\mathbf{S}^{-1}\dots\mathbf{S}\Lambda\mathbf{S}^{-1})h^j}{j!} =$$
$$= \mathbf{S}\left(\sum_{j=0}^{\infty} \frac{(\mathbf{\Lambda}h)^j}{j!}\right) \mathbf{S}^{-1} = \mathbf{S}\exp(\mathbf{\Lambda}h)\mathbf{S}^{-1}$$
(10)

where matrix S(V) is composed of eigenvectors concatenated as column vectors; and matrix $\Lambda(V)$ contains eigenvalues placed on the corresponding places on diagonal, such that $A(V) = S(V)\Lambda(V)S(V)^{-1}$.

Outline	Model Definition	Motivation 00	Methods 00000	Results
Tabulation	(tab.)			

Because finding eigenvalues and eigenvectors is computationally expensive:

- we save the matrices $S(\tilde{V})$ and $\Lambda(\tilde{V})$ for a fine grid of physiological potentials: $\tilde{V} = (-100, 70)$ mV with the step 0.01 mV.
- before numerical solution we pre-compute: $\boldsymbol{T}(\tilde{V}) = \boldsymbol{S}(\tilde{V}) \exp(\boldsymbol{\Lambda}(\tilde{V})h)\boldsymbol{S}(\tilde{V})^{-1}$
- The numerical solution:

$$\vec{u}^{n+1} = \boldsymbol{T}(\tilde{V}_{j(n)})\vec{u}^n \tag{11}$$

where $\tilde{V}_{j(n)} \approx V(t_n)$; and $T(\tilde{V}_{j(n)})$ is quickly substituted during the solution.

In our system $d\vec{u}/dt = \mathbf{A}(V(t))\vec{u}$, the transition rates matrix can be divided according to the transition rates speeds:

 $\boldsymbol{A}(\boldsymbol{V}) = \boldsymbol{A}_0(\boldsymbol{V}) + \boldsymbol{A}_1(\boldsymbol{V}) + \boldsymbol{A}_2(\boldsymbol{V})$

Figure : Transition rates of I_{Na} Markov chain model.

<ロト < 同ト < 三ト <

ヨート

Then the solution can be split into three steps:

$$\vec{u}^{n+1/3} = \exp(h \mathbf{A}_0(t_n)) \vec{u}^n$$
 (12)

$$\vec{u}^{n+2/3} = \exp(h\mathbf{A}_1(t_n))\vec{u}^{n+1/3}$$
(13)

$$\vec{u}^{n+1} = \vec{u}^{n+2/3} + h \mathbf{A}_2(t_n) \vec{u}^{n+2/3}$$
(14)

(日) (同) (至) (至) (至)

- $\vec{u}^{n+1/3}$ contribution from the $A_0(t)$
- $\vec{u}^{n+2/3}$ contribution from the $A_0(t) + A_1(t)$
- \vec{u}^{n+1} final solution at the time t_{n+1}

Outline	Model Definition	Motivation 00	Methods ○○○○●○	Results
Hybrid	method (hyb.):	Solution for 🖊	A₀(∨) (1/2)	

$\frac{\mathrm{d}O}{\mathrm{d}t} = \alpha_{PO}P - \alpha_{OU}O$	(15)
$\frac{\mathrm{d}P}{\mathrm{d}t} = \alpha_{QP}Q - \alpha_{PO}P$	(16)
$\frac{\mathrm{d}Q}{\mathrm{d}t} = \alpha_{RQ}R - \alpha_{QP}Q$	(17)
$\frac{\mathrm{d}R}{\mathrm{d}t} = -\alpha_{RQ}R$	(18)
$\frac{\mathrm{d}S}{\mathrm{d}t} = -\alpha_{ST}S$	(19)
$\frac{\mathrm{d}T}{\mathrm{d}t} = \alpha_{ST}S - \alpha_{TU}T$	(20)
$\frac{\mathrm{d}U}{\mathrm{d}t} = \alpha_{TU}T + \alpha_{OU}O$	(21)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

Outline Model Definition Methods 00000 Hybrid method (hyb.): Solution for $A_0(V)$ (2/2) $O = O_0 \mu_{OU} + P_0 \left| \frac{\alpha_{PO}(\mu_{PO} - \mu_{OU})}{\alpha_{OU} - \alpha_{PO}} \right| +$ $+ Q_0 \left[\frac{\alpha_{PO} \alpha_{QP} (\mu_{QP} - \mu_{OU})}{(\alpha_{PO} - \alpha_{OP}) (\alpha_{OU} - \alpha_{OP})} - \frac{\alpha_{PO} \alpha_{QP} (\mu_{PO} - \mu_{OU})}{(\alpha_{PO} - \alpha_{OP}) (\alpha_{OU} - \alpha_{PO})} \right] +$ $+ R_0 \left[-\frac{\alpha_{PO}\alpha_{QP}\alpha_{RQ}(\mu_{QP} - \mu_{OU})}{(\alpha_{OP} - \alpha_{RO})(\alpha_{PO} - \alpha_{QP})(\alpha_{OU} - \alpha_{QP})} + \right]$ $+\frac{\alpha_{PO}\alpha_{QP}\alpha_{RQ}(\mu_{PO}-\mu_{OU})}{(\alpha_{OP}-\alpha_{RO})(\alpha_{PO}-\alpha_{OP})(\alpha_{OU}-\alpha_{PO})}+$ $+\frac{\alpha_{PO}\alpha_{QP}\alpha_{RQ}(\mu_{RQ}-\mu_{OU})}{(\alpha_{OP}-\alpha_{RQ})(\alpha_{PO}-\alpha_{RQ})(\alpha_{OU}-\alpha_{RO})} -\frac{\alpha_{PO}\alpha_{QP}\alpha_{RQ}(\mu_{PO}-\mu_{OU})}{(\alpha_{QP}-\alpha_{RQ})(\alpha_{PO}-\alpha_{RQ})(\alpha_{OU}-\alpha_{PO})}\right]$ (22)

- O_0, P_0, Q_0, R_0 initial conditions at t_0
- $\mu_{jk} = \exp(-\alpha_{jk}(t-t_0))$

Figure : Cardiac excitation simulations with I_{Na} Markov chain model.

æ

Outline	Model Definition	Motivation 00	Methods 000000	Results
Results (2/	2)			

Table : Computational cost [s] during 100 pulses with cycle length of 1 s.

	h =	10 μs	h = -	40 μs	h = 1	$00 \ \mu s$
I _{Na} Model	I _{Na}	Total	I _{Na}	Total	I _{Na}	Total
Eul.	5.44	24.01	1.29	6.02		
Eul. (tab.)	2.74	21.38	0.69	5.36		
gRL (tab.)	4.79	24.36	1.23	6.23	0.54	2.45
hyb.	9.51	28.13	2.22	7.04	0.79	2.83
hyb. (tab.)	2.89	21.71	0.77	5.49	0.37	2.21

・ロ・ ・ 御・ ・ 神・ ・ 神・

3

Outline	Model Definition	Motivation	Methods	Results
	00000	00	000000	

A. L. Hodgkin and A. F. Huxley.

A quantitative description of membrane current and its application to conduction and excitation in nerve. *J Physiol*, 117(4):500–544, Aug 1952.

S. Rush and H. Larsen.

A practical algorithm for solving dynamic membrane equations.

IEEE Trans Biomed Eng, 25(4):389–392, Jul 1978.

C. E. Clancy and Y. Rudy.

Na⁺ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. *Circulation*, 105(10):1208–1213, Mar 2002.

向下 イヨト イヨト