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Part 1: Thursday 10th October

1 Classical (i.e. non-random) setting

1.1 Set-theoretic dynamical systems

A set-theoretic dynamical system (X, f) consists of a set X and a function f : X → X. Given
x ∈ X, we define its orbit (fn(x))n≥0 – heuristically:

• X is the set of possible states of some process (hence we call X the state space);

• f is the rule specifying how the process proceeds from its current state to its next state;

• x is an “initial condition” for the process.

The dynamics of the dynamical system f is a “soft” term referring to the behaviour of the set
of orbits.

We now want a notion of what it means for two set-theoretic dynamical systems (X, f : X → X)
and (Y, g : Y → Y ) to be the same dynamical system after re-labelling the elements of X by the
elements of Y ; in other words, we want a notion of isomorphism for set-theoretic dynamical
systems. This is provided by the following:

Definition. Two set-theoretic dynamical systems (X, f) and (Y, g) are conjugate if there exists
a bijection h : X → Y such that

f = h−1 ◦ g ◦ h.

In other words, performing f on X is the same as first translating from X to Y via h, then
performing g on Y , and then translating back from Y to X via the inverse of h.

1.2 Topological dynamical systems

Often we do not want to consider the set of states of a process as completely disjointed, but
rather as having some notion of what it means for a sequence of states to get arbitrarily close to
another state. Hence we would want to equip X with a topology:
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A topological dynamical system (X, f) consists of a topological space X and a continuous
map f : X → X. The notion of isomorphism for topological dynamical systems is then as follows:

Definition. Two topological dynamical systems (X, f) and (Y, g) are topologically conjugate
if there exists a homeomorphism h : X → Y such that

f = h−1 ◦ g ◦ h.

2 Random setting

2.1 Random maps

So far, we have considered the situation that the rule specifying how to proceed from the current
state to the next state is deterministic; we now consider the case that this rule incorporates
some influence from some noise.

Fix a probability space (I, I, ν), which will represent the noise space. (We don’t call it (Ω,F ,P)
as that will come later.)

A random map on a topological space X is an I-indexed family (fα)α∈I of continuous maps
fα : X → X such that the map (α, x) 7→ fα(x) is measurable (where X is equipped with the
Borel σ-algebra).

What this means is that our self-map of X now depends on some parameter α that is realised
randomly according to the probability distribution ν.

2.2 Dynamics of a random map

The dynamics of a dynamical system (X, f) was defined essentially as the behaviour arising from
iterating the map f . For our purposes here, the dynamics of a random map will analogously
be defined as the behaviour arising from iterating the process of selecting a random α
independently of all previously selected α’s and applying the associated map fα. We
formalise this as follows:

Let (Ω,F ,P) := (IZ, I⊗Z, ν⊗Z). So Ω is the space of all bi-infinite sequences (αi)i∈Z of α-
values, where the probability measure P corresponds to each coordinate αi having probability
distribution ν independently of all the other coordinates. Now in the classical deterministic setup,
we may regard fn−m : X → X as being the map taking the state at time m to the state at time
n, for any m,n ∈ Z with n ≥ m; analogously in the random setting, for each ω=(αi)i∈Z ∈ Ω,
the map from the state at time m ∈ Z to the state at time n ≥ m is given by

fαn−1 ◦ . . . ◦ fαm .

In particular, fα0 is the map sending the “current state” – i.e. the state at time 0 – onto the
next state.

2.3 Deterministic conjugacy of random maps

We still fix the probability space (I, I, ν). Suppose we have a random map (fα)α∈I on X and a
random map (gα)α∈I on Y ? What would it mean for these two random maps to be isomorphic?
The answer is given by the following definition:
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Definition. Random maps (fα)α∈I onX and (gα)α∈I on Y are deterministically topologically
conjugate if there exists a homeomorphism h : X → Y such that for every α ∈ I,

fα = h−1 ◦ gα ◦ h.

It is “very difficult” for two random maps to be deterministically topologically conjugate –
this is a much more degenerate scenario than for two classical topological dynamical systems to
be topologically conjugate (assuming (I, I, ν) is non-trivial).

So the question arises as to whether we can find a weaker and “more realistic” way to extend
the notion of topological conjugacy from the classical setting to the random setting.

General principle: It is easier for two objects to be isomorphic when they are
equipped with a weaker structure.

For example, the circle and an interval are not isomorphic as topological spaces (i.e. they are
not homeomorphic); but if we remove the topological structure and just consider them as sets,
then the circle and an interval are isomorphic as sets.

So likewise, we will arrive at our definition of conjugacy by, crudely speaking, “weakening
the structure of a random map” and then taking the isomorphism of the result.

If we now simply gave the definition, then it would likely seem like it had been pulled out
of nowhere. So instead, we will take a detour to describe a concept analogous to how we shall
“weaken the structure” of a random map, and with this analogy in mind we will formulate our
definition of conjugacy for random maps.

2.4 Analogy from physics

Fix a 3D coordinate system – say, the origin is a particular corner of the floor of the room you
are in, with an x-axis, y-axis and z-axis extending from that corner along the boundaries of
the two walls that meet there. Ignoring units of distance, this coordinate system provides an
identification of 3D space with R3. Now suppose we have a particle in the room, whose position
within this coordinate system as a function of time is given by ζ1(t) ∈ R3. The evolution of ζ1(t)
is governed by Newton’s laws, which can loosely speaking be regarded – for the purpose of
our analogy – as a dynamical system specifying the evolution of the position of the particle.

Now suppose we consider the same particle, in a different set of coordinates where the origin is
a corner of the ceiling of some room in another building. Suppose the position of the particle
in this new set of coordinates is given by ζ2(t). The path ζ2(·) is a different path in R3 from
the path ζ1(·), and yet they are describing exactly the same object, namely the motion of the
particle as governed by Newton’s laws. The fact that they are describing the same object is
manifested through the existence of an isometry h : R3 → R3 such that h(ζ1(t)) = ζ2(t) for all t.
In other words, the two paths are the same path after transforming via h. Here, the isometry h
will be analogous to the homeomorphism appearing in the definition of deterministic topological
conjugacy.

Now suppose we have a third coordinate system, defined relative to someone who is driving a car
along the road outside the building you are in. In this coordinate system, say the position of the
particle we have been considering is given by ζ̃(t) ∈ R3. Note that ζ̃(t) is describing exactly the
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same object as ζ1(t) and ζ2(t), and yet there is no isometry of R3 that maps ζ1(·) or ζ2(·) onto
ζ̃(·). If we want a “weaker notion of isometry” that takes into account relative motion among
different reference frames:

• First, regard the motion t 7→ ζ(t) of a particle as a motion through spacetime, t 7→ (t, ζ(t)).

• Next, observe that the identification of spacetime as the Cartesian product of time∼=R
and space∼=R3 makes reference to the coordinate system via which space is identified with
R3. The particular choice of coordinate system is a stronger structure on spacetime
than is necessary to describe spacetime. Now remove this additional structure by
regarding spacetime as the union of disjoint copies of 3-dimensional space associated to
each moment in time,

spacetime ∼=
⋃
t∈R
{t} ×X[t]

where X[t] is isometric to R3. So we have removed the ability to say whether two
points in spacetime have the same spatial coordinates, except in the case that
they have the same temporal coordinate.

• Motivated by this weaker structure on spacetime, a “weak isometry” of R× R3 is a map
H : R×R3 → R×R3 such that H maps {t} ×R3 onto {t} ×R3 and, letting ht : R3 → R3

be given by H(t, x) = (t, ht(x)), ht is an isometry of R3.

With this approach, there is a weak isometry that maps the path (t, ζ1(t)) onto the path (t, ζ̃(t)).

Now in a given coordinate system, Newton’s laws can be regarded as a dynamical system
specifying the motion of particles through space; but Newton’s laws themselves do not single
out any one coordinate system as special.1 Therefore, working with our weaker structure of
spacetime, Newton’s laws may be regarded as a dynamical system specifying the motion of
particles through spacetime, where the temporal component is always constant-speed progression
through time. Thus, from the spatial perspective, Newton’s laws dictate how the position in
X[t1] of a particle at time t1 will progress onto the position in X[t2] of the particle at time t2.

2.5 Defining topological conjugacy

Heuristically, the “weaker structure” of a random map is as follows:

• A random map (fα)α∈I on “space” X defines a measurable map Θ on “spacetime” Ω×X
given by

Θ(ω, x) = (θω, fα0(x))

where ω = (αi)i∈Z and θω = θ((αi)i∈Z) := (αi+1)i∈Z. Just as Ω is analogous to “time” in
the above setting, the shift map θ : Ω→ Ω is analogous to “progression through time”.

• We weaken the structure of “spacetime” from the Cartesian product Ω×X to the disjoint
union

⋃
ω∈Ω{ω} ×X[ω] where X[ω] is homeomorphic to X. But this disjoint union is not

“completely disorderly”: we still keep the fibres {ω}×X[ω] “glued together” by keeping on
the weaker structure

⋃
ω∈Ω{ω} ×X[ω] the σ-algebra inherited from the stronger structure

Ω×X equipped with its natural σ-algebra F ⊗ B(X).

1They do single out as special one equivalence class of coordinate systems under the equivalence relation of
zero relative rotation and constant-speed relative translation; but we will ignore this.
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• From this point of view, Θ is still a measurable map from
⋃
ω∈Ω{ω} ×X[ω] to itself, with

the map fα0 which sends the current state onto the next state being a map from X[ω] to
X[θω].

Measurable maps on “spacetime”
⋃
ω∈Ω{ω} ×X[ω] whose Ω-component coincides with θ will be

identified up to P-almost everywhere equality of the associated “spatial” mapping from X[ω] to
X[θω].

2.5.1 Rigorous definition of “topological conjugacy” (without “deterministic”)

Fix a probability space (I, I, ν) and let (Ω,F ,P) := (IZ, I⊗Z, ν⊗Z). We define θ : Ω→ Ω to be
the left-shift map, θ((αi)i∈Z) := (αi+1)i∈Z.

Definition. We say that a random map (fα)α∈I on a topological space X and a random map
(gα)α∈I on a topological space Y have topologically conjugate dynamics if there exists a
measurably invertible function H : Ω×X → Ω× Y with H({ω} ×X) = {ω} × Y for all ω ∈ Ω,
such that writing

H(ω, x) = (ω, hω(x))

we have:

• the map hω : X → Y is a homeomorphism for all ω ∈ Ω;

• for P-almost every ω=(αi)i∈Z ∈ Ω,

fα0 = h−1
θω ◦ gα0 ◦ hω.

The heuristic interpretation is: to apply the mapping fα0 from X[ω] to X[θω], we first translate
from X[ω] to Y [ω] via hω, we then apply the mapping gα0 from Y [ω] to Y [θω], and we then
translate back from Y [θω] to X[θω] via the inverse of hθω.

It turns out that taking Ω to be the two-sided sequence space IZ rather than the one-sided
sequence space IN0 is very significant: including the negative-time coordinates in Ω allows much
more flexibility in the set of maps hω. In fact, using the one-sided sequence space in the above
definition makes it barely weaker than deterministic topological conjugacy.

Part 2: Thursday 24th October

3 Dynamics on the circle S1

3.1 The state space S1

Last time: a dynamical system is, heuristically, a rule specifying how to proceed from the current
state x ∈ X to the next state f(x) ∈ X. The set X is called the state space, and represents the
set of possible states of a process.

We now suppose the set X of possible states is topologically a circle; in other words, the
process is what we may call a “cyclic process” [Ant84]. We will denote this state space X as S1.

Now there are two possible “directions of travel” along the circular state space S1. We may wish
to equip S1 with an orientation: this is a specification of which of the two directions we consider
to be “progressing forward through the cycle” (anticlockwise) and which one we consider to
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be “regressing backward through the cycle” (clockwise). So a given topological circle always
has two possible orientations; a topological circle equipped with a choice of orientation is called
an oriented topological circle.

Now all the results that we will present are for random maps on a topological circle S1,
with no extra structure required on the circle. However, “for convenience”, we will do the
following two things:

(1) we will equip S1 with an orientation;

(2) we will calibrate the oriented space S1 – heuristically:

• we choose a state in S1 that we consider to correspond to the “start of a cycle”,
which we denote [0];

• from [0] we go round the circle assigning to each state in S1 a number in [0, 1)
(written inside square brackets [·]) which represents “what proportion through a
cycle we are at”.

Slightly more formally, our “calibration” is a continuous bijective map

[0, 1) −→
[·]

S1

such that as x increases in [0, 1), [x] moves anticlockwise round S1. Now observe that as
x↗ 1, [x]→ [0]. Therefore, define [1] = [0]. Then, by extension (since we can continue going
anticlockwise round the circle, and can likewise also go clockwise round the circle indefinitely),
define

[x+ n] = [x] ∀x ∈ [0, 1), n ∈ Z.
So, in algebraic terms, our calibration is an identification of S1 with the quotient R/Z of the
additive group (R,+) by its subgroup Z. Note that by this identification, the sum [x]+[y] := [x+y]
of two elements [x] and [y] of S1 is well-defined.

Note that from a physical perspective, the choice of orientation is likely to be physically
justified, but the specific choice of calibration is, by comparison, somewhat arbitrary.
For example: The set of positions of the Earth relative to the Sun is (for simplistic purposes) an
ellipse, which is a topological circle. This is equipped with a very natural choice of orientation –
namely, progression along this ellipse corresponds to the direction of the Earth’s motion as time
moves forward; but our decision to start the year at January 1st is somewhat arbitrary (and not
particularly logical).
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3.2 Circle maps f : S1 → S1

If f : S1 → S1 is a homeomorphism, then either

• as x moves round the circle, f(x) moves round the circle in the opposite direction to x; or

• as x moves round the circle, f(x) moves round the circle in the same direction as x.

In the latter case, we say that f is orientation-preserving; in the former case, we say that
f is orientation-reversing. Note that if S1 is regarded as just a topological circle without a
pre-specified orientation, one can still determine whether a given homeomorphism f : S1 → S1

is orientation-preserving or orientation-reversing: either of the two possible orientations on
S1 would still give the same answer. (By contrast, a homeomorphism between two different
topological circles cannot be classified as orientation-preserving or orientation-reversing without
first specifying orientations on the two topological circles.)

Recall that two continuous maps f, g : S1 → S1 are topologically conjugate if there exists a
homeomorphism h : S1 → S1 such that f = h−1 ◦ g ◦ h. Intuitively, this means that a different
choice of calibration of S1 transforms f to g, except that here, the re-calibration is allowed to
have the opposite orientation – specifically, this corresponds to the case that h is an orientation-
reversing. Since the choice of orientation is often physically motivated, we may wish
for our re-calibration to respect the pre-defined orientation on S1; namely:

Definition. Two continuous maps f, g : S1 → S1 are orientationally conjugate if there exists
an orientation-preserving homeomorphism h : S1 → S1 such that f = h−1 ◦ g ◦ h.

So

• topological conjugacy is the isomorphism of maps on a topological circle;

• orientational conjugacy is the isomorphism of maps on an oriented topological circle.

3.3 Symmetry

Suppose I am considering the dynamics of some cyclic process with state space S1; but for some
other person, it is every k-th cycle of the process that is significant (where k ≥ 2). Thus, the
“other person’s circle S1” to describe the process would consist of k copies of “my circle S1”; for
simplicity, we can imagine that each arc {[x] : i

k ≤ x < i+1
k }, i ∈ {0, . . . , k − 1}, of the other

person’s circle maps onto the whole of my circle via the map x 7→ kx.
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Suppose that the evolution of the cyclic process is described by a map f̃ : S1 → S1, which we
will take to be an orientation-preserving homeomorphism; and let us express this map in the
form f̃([x]) = [F̃ (x)] where F̃ : R→ R is a continuous function. (This is always possible.) Then
the same process represented on the other person’s circle may be described by an orientation-
preserving homeomorphism f : S1 → S1 of the form

f([x]) =
[

1
k F̃ (kx) + i

k

]
for some i ∈ {0, . . . , k − 1}. A map f of this form is called a lift of f̃ by order-k rotational
symmetry.

Definition. We say that an orientation-preserving homeomorphism f : S1 → S1 has order-k
rotational symmetry if the following equivalent statements hold:

• there is an orientation-preserving homeomorphism f̃ : S1 → S1 such that f is a lift of f̃ by
order-k rotational symmetry;

• f(x+ [ 1
k ]) = f(x) + [ 1

k ] for all x ∈ S1.

Example. For each k ≥ 2, the map f([x]) = [x− 1
10k sin(2πkx)] has order-k rotational symmetry.

Now the above definition was motivated by the heuristic consideration that the other person’s
calibration of S1 was the same as mine modulo rotation through [ 1

k ]; but the other person could
equally well choose any other calibration of their circle that “contains k topological copies of
mine”. So we now give a purely topological notion of symmetry where, under the above heuristic,
other calibrations of the other person’s circle are allowed.

Definition. We say that an orientation-preserving homeomorphism f : S1 → S1 has order-k
topological symmetry if the following equivalent statements hold:

• f is orientationally conjugate to an orientation-preserving homeomorphism with order-k
rotational symmetry;

• there is an orientation-preserving homeomorphism τ with inf{m ≥ 1 : τm = idS1} = k,
such that f ◦ τ = τ ◦ f .

4 Random circle homeomorphisms

Last time, the noise space was an arbitrary probability space (I, I, ν). But in practice, the space
of possible noise realisations influencing some process is likely to have some structure by which
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one can say whether a sequence of possible noise realisation comes “arbitrarily close” to another
possible noise realisation. So we will endow I with a topological structure.

More precisely, we fix:

• a connected Polish space I, with its Borel σ-algebra I = B(I);

• a probability measure ν with full support (i.e. every open subset of I has strictly positive
measure).

(A Polish space roughly speaking means “a reasonably nice topological space”; more precisely, it
is a separable topological space where the topology can be generated by a complete metric.)

From here, we define a RCH (“random circle homeomorphism”) as an I-indexed family (fα)α∈I
of orientation-preserving homeomorphisms fα : S1 → S1 such that the mapping (α, x) 7→ fα(x)
is continuous and the following non-degeneracy condition holds:

(∗) for every non-dense bi-infinite sequence (xi)i∈Z in S1 there exists α ∈ I and i ∈ Z such
that fα(xi) 6= xi+1.

(Don’t worry about any intuitive meaning of this; the point is that failing to fulfil this condition
is a very degenerate scenario.)

RCHs are a special case of random maps as defined last time, and so we can define deterministic
topological conjugacy, as well as topological conjugacy without the word “deterministic”, just as
last time. Deterministic topological conjugacy between RCHs (fα)α∈I and (gα)α∈I is the notion
of isomorphism for random maps on a topological circle, meaning intuitively that a re-calibration
of S1 transforms (fα)α∈I to (gα)α∈I . But once again, we might want to respect a pre-defined
orientation on S1, in which case we need the notion of isomorphism for random maps on an
oriented topological circle:

Definition. We say that two RCHs (fα)α∈I and (gα)α∈I are deterministically orientationally
conjugate if there exists an orientation-preserving homeomorphism h : S1 → S1 such that for
all α ∈ I,

fα = h−1 ◦ gα ◦ h.

This means intuitively that there is a re-calibration of S1 which keeps the same orientation, by
which (fα)α∈I is transformed to (gα)α∈I .

Now as last time, we let (Ω,F ,P) = (IZ,B(I)⊗Z, ν⊗Z).

Lemma. Suppose we have RCHs (fα)α∈I and (gα)α∈I , and a function H : Ω×S1 → Ω×S1 as in
the definition (from last time) of topologically conjugate dynamics. Writing H(ω, x) = (ω, hω(x)),
we have that either

(i) hω is orientation-preserving for P-almost all ω, or

(ii) hω is orientation-reversing for P-almost all ω.

Definition. If H as in the definition of topologically conjugate dynamics can be chosen so that
(i) holds, then we say that (fα)α∈I and (gα)α∈I have orientationally conjugate dynamics.

[Ant84] V. A. Antonov. Modeling of processes of cyclic evolution type. Synchronization by a
random signal. Vestnik Leningrad. Univ. Mat. Mekh. Astronom., (vyp. 2):67–76, 1984.
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