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Motivation - The Auditory Streaming Paradigm (AS)

The psychoacoustic perceptual experiment - pure tones A and B

I Perception of integrated (INT) or segregated (S) rhythms
I Dependence on stimulus parameters

We explore a "minimal" firing rate model with periodic inputs driving
oscillations
I Coupled neural CPG oscillators (Rubin & Terman, 2000)
I Perceptual rivalry via adaptation or synaptic depresstion (Shpiro et al,

2009)



Outline of the talk

I Model description
I Analyse symmetry and parameter constraints
I Analitical approach to classify dynamics (slow-fast

decomposition)
I Exhaustive study of states in the space of parameters
I Interpretation of states with AS perceptions
I Show similarity with AS experiments
I Show a rich repertoire of dynamical states
I Computational analysis under smooth conditions



Model description

Two periodically forced neural populations (A and B) coupled by fast direct
excitation and slow delayed inhibition

Periodically forced system of 4 delay differential
equations:

τ u̇A(t) = −uA(t)+H(auB(t)−bsB(t−D)+ciA(t−t0))
τ u̇B(t) = −uB(t)+H(auA(t)−bsA(t−D)+ciB(t−t0))
ṡA(t) = H(uA(t))(1−sA(t))/τ−sA(t)/τi
˙sB(t) = H(uB(t))(1−sB(t))/τ−sB(t)/τi

Heaviside activation H(x) =

{
1, if x ≥ θ
0, otherwise

Slow-fast regime τ/τi<<1

Parameters: activity threshold θ ∈ (0, 1), synaptic strengths a and b, input
strength c and onset t0, inhibition time scale τi , activity time scale τ



Periodic square-wave inputs

iA(t) =
∑∞

k=0 χI k
A

(t) + ν
∑∞

k=0 χI k
B

(t)

iB(t) = ν
∑∞

k=0 χI k
A

(t) +
∑∞

k=0 χI k
B

(t)

χI (t) = 1 for t ∈ I and 0 otherwise, and scaling parameter ν (d =νc)

I kA =[αA
k , β

A
k ]=[2kTR, 2kTR+TD], I kB =[αB

k , β
B
k ]=[(2k+1)TR, (2k+1)TR+TD]

WhereTD=tones’ duration and PR=1/TR=tone repetition rate.

I Mimic stereotyped neural responses from Macaque auditory cortex (AC)
I Populations A and B are assumed to be located downstream AC

We introduce a bit of notation:

Φ = {R ⊂ R : R = IAk or R = IBk , ∃k ∈ N}, I =
⋃
R∈Φ

R



Z2 equivariance - asymmetrical cycles exist in pairs

Rewrite the model as a non-autonomous dynamical system

v̇(t) = f (v(t), iA(t), iB(t)), v =(uA, uB , sA, sB)

Map κ swaps A and B indexes in the system’s variables

κ : v = (uA, uB , sA, sB , iA, iB) 7→ (uB , uA, sB , sA, iB , iA)

Apply TR time shift on the inputs

iA(t+TR)= iB(t) iB(t+TR)= iA(t), ∀t ∈ R

We have Z2-equivariance under transformation κ and TR time shift

κ(f (v(t), iA(t), iB(t)))= f (κ(v(t+TR), iB(t+TR), iA(t+TR)))

Main conclusion: any 2nTR-periodic asymmetrical cycle (not in-phase nor
anti-phase) has a co-existing κ-conjugate cycle κ(v(t+TR))



Constraining model into a realistic range of parameters

With no inputs (iA = iB = 0) there are two possible equilibria: a low-activity
state P = (0, 0, 0, 0) and a high-activity state Q = (1, 1, 1, 1).

If a− b ≥ θ then P and Q co-exist, and dynamics is trivial
I If c < θ: trajectories starting in the basin of P (Q) end in P (Q)
I c ≥ θ: any trajectory converges to Q

To avoid this unrealistic scenario

1. a− b < θ → P is the only equilibium without inputs (no saturation)

2. c ≥ θ → units activate in the absence of inhibition (b = 0)

In addition, we consider input parameters contraints
I PR ∈ [1, 40]Hz : physiological conditions tested in experiments
I TR>TD: No active tone overlap I iA ∩ I jB = ∅, ∀i 6= j ∈ N
I df ∈ [0, 1] defined as ν = ν(df ) = (1− df 1/m) to model the tone pitch

difference



The fast and slow subsystem at fixed time t ∈ I kA

Change variables to the fast time scale r = t/τ , τ →∞

u′A = −uA + H(auB − bsB(t−D) + c)
u′B = −uB + H(auA − bsA(t−D) + d)
s ′A = H(uA)(1− sA)
s ′B = H(uB)(1− sB)

Where ′ = d/dr . Units can be OFF (∼ 0), ON (∼ 1), or turning OFF or ON
I Synaptic variables may jump up or be constant (if A and B unit OFF)

Slow-dynamics
ṡ = −s/τi

→ s is decreasing (on either time scales) except when the units turn ON
Dynamics in R−I (c =d =0) is simple, WLOG s̃B≥0, s̃A≥0 (at steady state)

u′A = −uA + H(auB−bs̃B)
u′B = −uB + H(auA−bs̃A)

(0, 0) is always a FP and Q = (1, 1) FP if and only if a−bs̃A≥θ and a−bs̃B≥θ



Dynamics in the intervals with no inputs (R−I )
Theorem
For any t ≥ t0 ∈ R−I :
1. If A or B is OFF at time t, both units are OFF in (t, t∗], where t∗ is:

t∗ = min
s∈I
{s > t}

2. If A or B is ON at time t, both units are ON in [t∗, t), where t∗ is:

t∗ = max
s∈I
{s < t}

Consequence: no unit can turn ON in R−I .

Definition (LONG and SHORT states)

I LONG - if at least one unit is ON at time t, ∃t ≥ t0 ∈ R−I
I SHORT - if both units are OFF ∀t ≥ t0 ∈ R−I



Synaptic decay and no saturated states if TD+D<TR

Lemma
Assume TD+D<TR. Defined Γ as:

Γ = {L ⊂ R : L = [αA
k , α

A
k +D] or L = [αB

k , α
B
k +D], ∃k ∈ N}

sA(t−D) and sB(t−D) are monotonically decreasing in L, ∀L ∈ Γ.

Lemma
If TD+D<TR both units are OFF ∀t ∈ J, where:

J =
⋃
k∈N

(βA
k +D, αB

k ] ∪ (βB
k +D, αA

k+1]



Dynamics in the the active tone intervals I assuming D ≥ TD

If D ≥ TD the delayed synaptic variables are constant on the fast time scale
(equal to 1 or exp decaying). For t ∈ I kA (A tone active phase):

u′A = −uA + H(auB−bs̃B + c)
u′B = −uB + H(auA−bs̃A + d)

Where s̃A = sA(t − D) and s̃B = sB(t − D). Four possible FPs

1. (0, 0) ↔ c < bs̃B + θ and d < bs̃A + θ

2. (1, 0) ↔ c ≥ bs̃B + θ and a + d < bs̃A + θ

3. (0, 1) ↔ a + c < bs̃B + θ and d ≥ bs̃A + θ

4. (1, 1) ↔ a + c ≥ bs̃B + θ and a + d ≥ bs̃A + θ



Basin of attraction of (0, 0) and (1, 1)

We note that only (0, 0) and (1, 1) can coexist if a > 0. We can rewrite system

u′A = −uA + S(uB − s2)
u′B = −uB + S(uA − s1)

s1 = (bs̃A−c+θ)/a, s2 = (bs̃B−c+θ)/a

0 < sk ≤ 1 for k = 1, 2
I (s1, s2) is a degenerate saddle

point where separatrices originate
I (1, 0) and (0, 1) converge to (1, 1)



Differential convergence to (1, 1)

Consider conditions when (1, 1) is the only FP and an orbit starting from (0, 0)

1. c− bs̃B≥θ and d−bs̃A≥θ both units turn ON simultaneously

u′A = 1− uA
u′B = 1− uB

2. c−bs̃B≥θ, d−bs̃B<θ and a+d−bs̃A≥θ A turns ON before B
Indeed ∃u∗ ∈ (0, 1] for which:

au∗+d−bs̃A =θ

From the first condition the fast subsystem reduces to:

u′A = 1− uA
u′B = −uB + H(auA − bs̃A + d) = −uB + η(uA)

I uA(r)→ 1 exponentially reaching point u∗ at time r∗=log[(1−u∗)−1]
I η(uA(r))=0, ∀r< r∗

I η(uA(r))=1, ∀r≥ r∗, and uA(r)→ 1 following A dynamics at r = 0

Back to t=τ r the B unit turns ON an infinitesimal delay δ = τ r∗ after A.

3. d−bs̃A≥θ, c−bs̃A<θ and a+c−bs̃B≥θ equal to 2 by swapping A and B.



Single OFF to ON transition during each active tone interval R ∈ Φ

Lemma
Assume TD+D<TR and D>TD. Let R = [α, β] ∈ Φ, and A (B) be ON at
time t ∈ R, then
(1) A (B) is ON ∀s ≥ t, s ∈ R
(2) ∃!t∗ ∈ R when A (B) turns ON
(3) sA(t−D) (sB(t−D)) is decreasing in [α, t∗+D]

Lemma

1. A (B) turns ON at time α ⇔ A (B) is ON ∀t ∈ (α, β]

2. A (B) if OFF at time β ⇔ A (B) is OFF ∀t ∈ R



MAIN and CONNECT states

Definition
Assume TD+D<TR and D>TD. A solution (state) is:
I MAIN if ∀R ∈ Φ, if ∃t∗∈R turning ON time for A or B, then t∗=min(R)

I CONNECT if ∃R ∈ Φ and ∃t∗∈R, t∗>min(R) turning ON time for the A
or the B unit



Classification of MAIN states

From the FP conditions of the fast system - dynamics in R = [α, β] ∈ Φ
I Both units turn ON at time α - (1, 1) is the only FP at time α.

1. f (sB)≥θ, g(sA)≥θ → both units instantaneously turn ON
2. g(sA)<θ, f (sB)≥θ and a+g(sA)≥θ → B turns ON after A
3. f (sB)<θ, g(sA)≥θ and a+f (sB)≥θ → A turns ON after B

I A(B) turns ON at α and B(A) is OFF at β
4. f (sB)≥θ, a+g(s̄A)<θ → (1, 0) FP in R

5. g(sA)≥θ, a+f (s̄B)<θ → (0, 1) FP in R

I Both units are OFF at β (0, 0) FP at β:
6. g(s̄A)<θ and f (s̄B)<θ

f (s)=

{
c−bs, if R = I kA
d−bs, if R = I kB

, g(s)=

{
d−bs, if R = I kA
c−bs, if R = I kB

sA =sA(α−D), s̄A =sA(β−D), sB =sB(α−D), s̄B =sB(β−D)

M = { MAIN states } = {s = s(t) states satisfying one of 1− 6, ∀R ∈ Φ}



Matricial form of MAIN states

Theorem
Let R ∈ Φ. There is an injective map ρ

ρ : M → B(2, 2)

s 7→ V =

[
xA yA
xB yB

] xA =H(f (sB)), yA =

{
1 if axB +f (sB)≥θ
0 if axB +f (s̄B)<θ

,

xB =H(g(sA)), yB =

{
1 if axA+g(sA)≥θ
0 if axA+g(s̄A)<θ

Moreover:

Im(ρ) = {V = ρ(s) : xA ≤ yA, xB ≤ yB , xA = xB = 0⇒ yA = yB = 0}

Element s ∈ M satisfying condition 1− 6 have one of the following images ρ(s):

(1)

[
1 1
1 1

]
(2)

[
1 1
0 1

]
(3)

[
0 1
1 1

]
(4)

[
1 1
0 0

]
(5)

[
0 0
1 1

]
(6)

[
0 0
0 0

]



Classification of CONNECT states and matricial form

For the classification we consider the following cases:
I (1-2) A(B) and B(A) turn ON at α and t∗ ∈ (α, β] respectively
I (3-4) A(B) is OFF at β and B(A) turns ON at t∗, ∃t∗ ∈ (α, β]

I (5) A and B turn ON at t∗, s∗ ∈ (α, β]

C = { CONNECT states } = {s = s(t) states satisfying one of 1− 5, ∃R ∈ Φ}

Theorem
Let R ∈ Φ. There is an injective map ρ

ρ : C → B(2, 3)

s 7→W =

[
xA yA xA
xB yB zB

] xA =H(f (sB)), xB =H(g(sA)),

yA =H(axB +f (sB))), yB =H(axA+g(sA))),

zA =H(ayB +f (s̄B))), zB =H(ayA+g(s̄A)))

Im(ρ)={W : xA≤yA≤zA, xB≤yB≤zB , xA =xB =0⇒ yA =yB =0, yA<zA or yB<zB}



Dynamics visualisation via the Matricial form V

The units’ dynamics in R is given by 1st and 2nd rows of V



LONG states

Lemma (LONG equivalence)
If D≥TD and TD+D<TR. A state is LONG if and only if ∃R = [α, β] ∈ Φ

1. A and B turn ON at times t∗A and t∗B ∈ R, respectively.

2. a−bsA(β) ≥ θ and a−bsB(β) ≥ θ, with β=max(R)

Moreover, both units are ON for t ∈ [β, t∗+D], turn OFF at time t∗+D, and
are OFF ∀t ∈ (t∗+D, tup], where t∗ = min{t∗A, t∗B} and tup = mins∈I{s > t}.



2kTR-periodic MAIN and CONNECT states

Theorem
Any periodic state ψ=ψ(t) must be 2kTR-periodic, ∃k ∈ N

ψ(t+2kTR) = ψ(t), ∀t ≥ t0, t ∈ R

Definition
I MS

k and ML
k - sets of SHORT and LONG 2kTR-periodic MAIN states

I C S
k and C L

k - sets of SHORT and LONG 2kTR-periodic CONNECT states

Case k = 1

I Activity of A and B during Ii can be represented by matrices Vi , i = 1, 2
I Vi depend on the delayed synaptic variables at αi and βi

s i−A =sA(αi−D), s i−B =sB(αi−D), s i+A =sA(βi−D), s i+B =sB(βi−D)

αi =(i−1)TR, βi =(i−1)TR+TD



Matricial form for 2TR-periodic MAIN states
For 2TR-periodic SHORT states these delayed synaptic values depend on

N−=e−(TR−TD−D)/τi ,N+ = e−(TR−D)/τi ,M−=e−(2TR−TD−D)/τi ,M+ = e−(2TR−D)/τi

Theorem
There is an injective map:

ρ : MS
1 → B(2, 4)

ψ 7→ V =
[
V1 V2

]
=

[
x1
A y1

A x2
A y2

A

x1
B y1

B x2
B y2

B

]
Where, for i =1, 2, Vi is the matricial forms of ψ during the interval Ii :

s i±B =N±y j
B+M±(1−y j

B)y i
B , and s i±A =N±y j

A+M
±(1−y j

A)y i
A, ∀i , j =1, 2, i 6= j

Im(ρ) = {V =
[
V1 V2

]
: V1 ∈ Im(ρI1),V2 ∈ Im(ρI1) satisfying 1-4 below}

1. y1
A = y2

B = 1⇒ x1
A = x2

B and y2
A = y1

B = 1⇒ x2
A = x1

B

2. y1
B = y2

B ⇒ x1
A ≥ x2

A and y1
A = y2

A ⇒ x1
B ≥ x2

B

3. y2
A = 1⇒ x1

B ≤ r and y1
B = 1⇒ x2

A ≤ r , for any entry r in V

4. y2
A = y2

B , y
1
A = y1

B ⇒ x1
A ≥ x1

B and x2
B ≥ x2

A



Matricial form and conditions for all 2TR-periodic SHORT MAIN states

I Using the conditions over V we find 13 possible states (algorithmically)
I Conditions for the well-definiteness of all V s and simplification
I Add conditions contained in the LONG equivalence theorem

C1 =d , C±2 =a−bM±+d , C±3 =c−bN±, C±4 =c−bM±, C±5 =a−bN±+d ,

C±6 =a−bN±+c, C±7 =d−bN±, C±8 =d−bM±, C9 =a−bM+ C10 =a−bN+

S1 SAB1 SD1 AP AS1 ASD2 INT1 INTD INT
1100
0000

1100
1100

1100
0100

1100
0011

1111
0011

1101
0011

1111
0000

1101
0111

1111
1111

C1<θ

C+
2 <θ

C+
3 <θ

C+
3 <θ

C−8 ≥θ
C9<θ

C−4 ≥θ

C−2 ≥θ

C+
3 <θ

C−8 <θ

C9<θ

C+
2 <θ

C−3 ≥θ

C−3 ≥θ

C+
5 <θ

C−8 ≥θ
C10<θ

C−2 ≥θ

C−3 ≥θ

C+
5 <θ

C−8 <θ

C10<θ

C1≥θ

C+
6 <θ

C−3 ≥θ

C−5 ≥θ

C−7 <θ

C10<θ

C−7 ≥θ
C10<θ



The next slides...

I Time histories and 2D regions of existence of 2TR-periodic SHORT MAIN
STATES

I Examples of 2TR-periodic SHORT CONNECT and LONG MAIN states
I Cycles with higher periods and cascades

I Period doubling of SHORT MAIN states
I Segrated switching SHORT MAIN and CONNECT states

I MAIN states under the case D<TD and comparisons with experiments
I Numerical study with smooth inputs and gain function, and non slow-fast

regime



2TR-periodic SHORT MAIN states time histories and regions of existence

I Integration - at least one unit responds to both tones
I Segregation - no unit responds to both tones

Theorem (Multistability)
No 2TR-periodic SHORT MAIN states can be bistable except for INTA and
SAB (not shown)



2TR-periodic SHORT CONNECT and LONG MAIN states

A similar analysis can be carried out for all combinations of SHORT/LONG
and MAIN/CONNECT states



Period doubling MAIN and CONNECT states

Extension to conditions for period doubling cascade using quantities

L−k =e−(kTR−TD−D)/τi , L+
k = e−(kTR−D)/τi , L±0 =+∞

Sk

A B
x1
Ay

1
A x2

Ay
2
A

x1
B y1

B x2
B y2

B

→
A B A B

x1
Ay

1
A 0 0 x2

Ay
2
A

x1
B y1

B 0 0 x2
B y2

B

→
A B A B A B

x1
Ay

1
A 0 0 0 0 x2

Ay
2
A

x1
B y1

B 0 0 0 0 x2
B y2

B

Ik
A B

x1
Ay

1
A x2

Ay
2
A

x1
B y1

B x2
B y2

B

→
A B A B A B

x1
Ay

1
A 0 0 x2

Ay
2
A 0 0

x1
B y1

B 0 0 x2
B y2

B 0 0
→

A B A B A B A B A B
x1
Ay

1
A 0 0 0 0 x2

Ay
2
A 0 0 0 0

x1
B y1

B 0 0 0 0 x2
B y2

B 0 0 0 0

Sk =SABk , SAk and Ik = INTDk , INTk PERIOD: TSk =2kTR and TIk =2(2k−1)TR

Theorem
Period doubling solutions of the other MAIN states cannot occur: AP, AS, SA, INTA

→ similar condiderations can be made with CONNECT states



Period doubling MAIN and CONNECT states



Segregated switching MAIN and CONNECT states Km
k and Wm

k

m=# of skipped tone and k=# of segregated cycles

B A .. B A .. B A

11 0 .. 0 1 .. 0 1

01 0 .. 0 1 .. 0 1

k m

B A .. A B .. A B A B .. B A .. B A

11 0 .. 0 0 .. 0 0 01 0 .. 0 1 .. 0 1

01 0 .. 0 1 .. 0 1 11 0 .. 0 0 .. 0 0

k km m
Theorem

W k
m may exist for m even. K k

m may exist for m odd



Cascades of Wm
k and Km

k in 2D

Extension to CONNECT states c, d , g , cd , cg , dg and cdg



The case D<TD under c−b ≥ θ
Theorem
If c−b ≥ θ these are the all possible stable states (LONG states cannot exist)



Computational analysis under smooth gain and inputs, non slow-fast scales
Sidmoid H(x) = [1+exp(λ(x−θ))]−1 with fixed λ=30 and τ/τi up to ∼ 10−1

Provide insights on the case TD+D>TR



RECAP AND MORE...

I Detailed analytical study of a rich repertoire of model states
I All possible 2TR-periodic states
I Cascades of period doubling and segregated switching

I Computational analysis under smooth conditions
I Link 2TR-periodic states with AS perceptions

I States occupying larger region of existence
I Quantitative agreement when varying parameters influencing AS perception

I Neuro-inspired model of AS with biophysical parameters
I Slow inhibition masks the perception of subsequent tones during segregation
I Fast excitation enables integration for large tones’ pitch differences

I More... (not shown in this presentation)
I Bistability via inhibitory feedback from a third, intrinsically oscillating unit
I Study of other exotic states (cycle skipping)



Thank you!!
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