Auditory streaming emerges from direct excitation and slow delayed inhibition

Andrea Ferrario

Dynamics Internal Seminar

26 March 2020

Motivation - The Auditory Streaming Paradigm (AS)

The psychoacoustic perceptual experiment - pure tones A and B

Perception of integrated (INT) or segregated (S) rhythms

We explore a "minimal" firing rate model with periodic inputs driving oscillations

- Coupled neural CPG oscillators (Rubin & Terman, 2000)
- Perceptual rivalry via adaptation or synaptic depression (Shpiro et al, 2009)

Outline of the talk

- Model description
- Analyse symmetry and parameter constraints
- Analitical approach to classify dynamics (slow-fast decomposition)
- Exhaustive study of states in the space of parameters
- Interpretation of states with AS perceptions
- Show similarity with AS experiments
- Show a rich repertoire of dynamical states
- Computational analysis under smooth conditions

Model description

Two periodically forced neural populations (A and B) coupled by fast direct excitation and slow delayed inhibition

> Periodically forced system of 4 delay differential equations:

$$\begin{aligned} \tau \dot{u}_{A}(t) &= -u_{A}(t) + H(au_{B}(t) - bs_{B}(t - D) + ci_{A}(t - t_{0})) \\ \tau \dot{u}_{B}(t) &= -u_{B}(t) + H(au_{A}(t) - bs_{A}(t - D) + ci_{B}(t - t_{0})) \\ \dot{s}_{A}(t) &= H(u_{A}(t))(1 - s_{A}(t))/\tau - s_{A}(t)/\tau_{i} \\ \dot{s}_{B}(t) &= H(u_{B}(t))(1 - s_{B}(t))/\tau - s_{B}(t)/\tau_{i} \end{aligned}$$
Heaviside activation $H(x) = \begin{cases} 1, & \text{if } x \ge \theta \\ 0, & \text{otherwise} \end{cases}$

otherwise

Slow-fast regime $\tau/\tau_i \ll 1$

Parameters: activity threshold $\theta \in (0, 1)$, synaptic strengths *a* and *b*, input strength c and onset t_0 , inhibition time scale τ_i , activity time scale τ

Periodic square-wave inputs

$$\begin{split} i_A(t) &= \sum_{k=0}^{\infty} \chi_{I_A^k}(t) + \nu \sum_{k=0}^{\infty} \chi_{I_B^k}(t) \\ i_B(t) &= \nu \sum_{k=0}^{\infty} \chi_{I_A^k}(t) + \sum_{k=0}^{\infty} \chi_{I_B^k}(t) \end{split}$$

 $\chi_I(t)=1$ for $t\in I$ and 0 otherwise, and scaling parameter u $(d\!=\!
u c)$

 $I_{A}^{k} = [\alpha_{k}^{A}, \beta_{k}^{A}] = [2kTR, 2kTR + TD], \quad I_{B}^{k} = [\alpha_{k}^{B}, \beta_{k}^{B}] = [(2k+1)TR, (2k+1)TR + TD]$

Where TD=tones' duration and PR=1/TR=tone repetition rate.

Mimic stereotyped neural responses from Macaque auditory cortex (AC)

Populations A and B are assumed to be located downstream AC

We introduce a bit of notation:

$$\Phi = \{ R \subset \mathbb{R} : R = I_k^A \text{ or } R = I_k^B, \exists k \in \mathbb{N} \}, \quad I = \bigcup_{R \in \Phi} R$$

\mathbb{Z}_2 equivariance - asymmetrical cycles exist in pairs

Rewrite the model as a non-autonomous dynamical system

$$\dot{v}(t) = f(v(t), i_A(t), i_B(t)), \quad v = (u_A, u_B, s_A, s_B)$$

Map κ swaps A and B indexes in the system's variables

$$\kappa : \mathbf{v} = (u_A, u_B, \mathbf{s}_A, \mathbf{s}_B, \mathbf{i}_A, \mathbf{i}_B) \mapsto (u_B, u_A, \mathbf{s}_B, \mathbf{s}_A, \mathbf{i}_B, \mathbf{i}_A)$$

Apply TR time shift on the inputs

$$i_A(t+TR)=i_B(t)$$
 $i_B(t+TR)=i_A(t), \quad \forall t\in\mathbb{R}$

We have \mathbb{Z}_2 -equivariance under transformation κ and *TR* time shift

$$\kappa(f(v(t), i_A(t), i_B(t))) = f(\kappa(v(t+TR), i_B(t+TR), i_A(t+TR)))$$

Main conclusion: any 2nTR-periodic asymmetrical cycle (not in-phase nor anti-phase) has a co-existing κ -conjugate cycle $\kappa(v(t+TR))$

Constraining model into a realistic range of parameters

With no inputs ($i_A = i_B = 0$) there are two possible equilibria: a low-activity state P = (0, 0, 0, 0) and a high-activity state Q = (1, 1, 1, 1).

If $a - b \ge \theta$ then P and Q co-exist, and dynamics is trivial

- If $c < \theta$: trajectories starting in the basin of P(Q) end in P(Q)
- $c \geq \theta$: any trajectory converges to Q

To avoid this unrealistic scenario

- 1. $a b < \theta \rightarrow P$ is the only equilibium without inputs (no saturation)
- 2. $c \ge \theta \rightarrow$ units activate in the absence of inhibition (b = 0)

In addition, we consider input parameters contraints

- ▶ $PR \in [1, 40]Hz$: physiological conditions tested in experiments
- ▶ TR > TD: No active tone overlap $I_A^i \cap I_B^j = \emptyset$, $\forall i \neq j \in \mathbb{N}$
- ► $df \in [0,1]$ defined as $\nu = \nu(df) = (1 df^{1/m})$ to model the tone pitch difference

The fast and slow subsystem at fixed time $t \in I_A^k$

Change variables to the fast time scale r=t/ au, $au
ightarrow\infty$

$$egin{array}{rcl} u'_A &=& -u_A + H(au_B - bs_B(t-D) + c) \ u'_B &=& -u_B + H(au_A - bs_A(t-D) + d) \ s'_A &=& H(u_A)(1-s_A) \ s'_B &=& H(u_B)(1-s_B) \end{array}$$

Where ' = d/dr. Units can be OFF (~ 0), ON (~ 1), or turning OFF or ON
▶ Synaptic variables may jump up or be constant (if A and B unit OFF)
Slow-dynamics

$$\dot{s}=-s/ au_{i}$$

 \rightarrow s is decreasing (on either time scales) except when the units turn ON Dynamics in $\mathbb{R}-I$ (c=d=0) is simple, WLOG $\tilde{s}_B \ge 0$, $\tilde{s}_A \ge 0$ (at steady state)

$$egin{array}{rcl} u_A'&=&-u_A+H({\sf a} u_B-{\sf b} ilde{s}_B)\ u_B'&=&-u_B+H({\sf a} u_A-{\sf b} ilde{s}_A) \end{array}$$

(0,0) is always a FP and Q=(1,1) FP if and only if $a-b ilde{s}_A{\geq} heta$ and $a-b ilde{s}_B{\geq} heta$

Dynamics in the intervals with no inputs $(\mathbb{R}-I)$

Theorem

For any $t \geq t_0 \in \mathbb{R} - I$:

1. If A or B is OFF at time t, both units are OFF in $(t, t^*]$, where t^* is:

$$t^* = \min_{s \in I} \{s > t\}$$

2. If A or B is ON at time t, both units are ON in $[t_*, t)$, where t_* is:

Consequence: no unit can turn ON in $\mathbb{R}-I$.

Definition (LONG and SHORT states)

- ▶ LONG if at least one unit is ON at time t, $\exists t \ge t_0 \in \mathbb{R} I$
- ▶ SHORT if both units are OFF $\forall t \ge t_0 \in \mathbb{R} I$

Synaptic decay and no saturated states if TD + D < TR

Lemma Assume TD+D < TR. Defined Γ as:

$$\Gamma = \{L \subset \mathbb{R} : L = [\alpha_k^A, \alpha_k^A + D] \text{ or } L = [\alpha_k^B, \alpha_k^B + D], \exists k \in \mathbb{N}\}$$

 $s_A(t-D)$ and $s_B(t-D)$ are monotonically decreasing in L, $\forall L \in \Gamma$.

Lemma

If TD + D < TR both units are OFF $\forall t \in J$, where:

Dynamics in the the active tone intervals I assuming $D \ge TD$

If $D \ge TD$ the delayed synaptic variables are constant on the fast time scale (equal to 1 or exp decaying). For $t \in I_A^k$ (A tone active phase):

$$\begin{array}{rcl} u'_A & = & -u_A + H(au_B - b\tilde{s}_B + c) \\ u'_B & = & -u_B + H(au_A - b\tilde{s}_A + d) \end{array}$$

Where $\tilde{s}_A = s_A(t - D)$ and $\tilde{s}_B = s_B(t - D)$. Four possible FPs

1.
$$(0,0) \leftrightarrow c < b\tilde{s}_B + \theta$$
 and $d < b\tilde{s}_A + \theta$

2.
$$(1,0) \leftrightarrow c \geq b\tilde{s}_B + \theta$$
 and $a + d < b\tilde{s}_A + \theta$

3.
$$(0,1) \leftrightarrow a + c < b\tilde{s}_B + \theta$$
 and $d \geq b\tilde{s}_A + \theta$

4.
$$(1,1) \leftrightarrow a + c \geq b\tilde{s}_B + \theta$$
 and $a + d \geq b\tilde{s}_A + \theta$

Basin of attraction of (0,0) and (1,1)

We note that only (0,0) and (1,1) can coexist if a > 0. We can rewrite system

$$egin{array}{rcl} u'_A &=& -u_A + S(u_B - s_2) \ u'_B &=& -u_B + S(u_A - s_1) \end{array}$$

$$s_1=(b ilde{s}_A{-}c{+} heta)/a,\;s_2=(b ilde{s}_B{-}c{+} heta)/a$$

$$0 < s_k \leq 1$$
 for $k = 1, 2$

- (s₁, s₂) is a degenerate saddle point where separatrices originate
- (1,0) and (0,1) converge to (1,1)

Differential convergence to (1,1)

Consider conditions when (1,1) is the only FP and an orbit starting from (0,0)1. $c - b\tilde{s}_B \ge \theta$ and $d - b\tilde{s}_A \ge \theta$ both units turn ON simultaneously

$$u_A' = 1 - u_A$$

 $u_B' = 1 - u_B$

2. $c-b\tilde{s}_B \ge \theta$, $d-b\tilde{s}_B < \theta$ and $a+d-b\tilde{s}_A \ge \theta$ A turns ON before B Indeed $\exists u^* \in (0, 1]$ for which:

$$au_*+d-b\tilde{s}_A=\theta$$

From the first condition the fast subsystem reduces to:

$$egin{array}{rcl} u'_A &=& 1-u_A \ u'_B &=& -u_B+H(au_A-b ilde{s}_A+d)=-u_B+\eta(u_A) \end{array}$$

u_A(r) → 1 exponentially reaching point u* at time r* =log[(1-u*)⁻¹]
η(u_A(r))=0, ∀r < r*
η(u_A(r))=1, ∀r≥ r*, and u_A(r) → 1 following A dynamics at r = 0
Back to t = τr the B unit turns ON an infinitesimal delay δ = τr* after A.
d-bš_A≥θ, c-bš_A<θ and a+c-bš_B≥θ equal to 2 by swapping A and B.

Single OFF to ON transition during each active tone interval $R \in \Phi$

Lemma

Assume TD+D < TR and D > TD. Let $R = [\alpha, \beta] \in \Phi$, and A(B) be ON at time $t \in R$, then (1) A(B) is ON $\forall s \ge t$, $s \in R$ (2) $\exists ! t^* \in R$ when A(B) turns ON (3) $s_A(t-D)$ ($s_B(t-D)$) is decreasing in $[\alpha, t^*+D]$

Lemma

- 1. A (B) turns ON at time $\alpha \Leftrightarrow A$ (B) is ON $\forall t \in (\alpha, \beta]$
- 2. A (B) if OFF at time $\beta \Leftrightarrow A$ (B) is OFF $\forall t \in R$

MAIN and CONNECT states

Definition

Assume TD+D < TR and D > TD. A solution (state) is:

- ▶ MAIN if $\forall R \in \Phi$, if $\exists t^* \in R$ turning ON time for A or B, then $t^* = \min(R)$
- CONNECT if ∃R ∈ Φ and ∃t* ∈ R, t* >min(R) turning ON time for the A or the B unit

Classification of MAIN states

From the FP conditions of the fast system - dynamics in $R = [\alpha, \beta] \in \Phi$

- **Both units turn ON at time** α (1,1) is the only FP at time α .
 - 1. $f(\underline{s}_{B}) \geq \theta, g(\underline{s}_{A}) \geq \theta \rightarrow \text{ both units instantaneously turn ON}$
 - 2. $g(\underline{s}_{A}) < \theta, f(\underline{s}_{B}) \ge \theta$ and $a + g(\underline{s}_{A}) \ge \theta \rightarrow B$ turns ON after A
 - 3. $f(\underline{s}_B) < \theta$, $g(\underline{s}_A) \ge \theta$ and $a + f(\underline{s}_B) \ge \theta \rightarrow A$ turns ON after B

Matricial form of MAIN states

Theorem Let $R \in \Phi$. There is an injective map ρ

$$\rho \colon M \to B(2,2) \qquad \qquad x_A = H(f(\underline{s}_B)), \quad y_A = \begin{cases} 1 & \text{if } ax_B + f(\underline{s}_B) \ge \theta \\ 0 & \text{if } ax_B + f(\overline{s}_B) < \theta \end{cases},$$
$$s \mapsto V = \begin{bmatrix} x_A & y_A \\ x_B & y_B \end{bmatrix} \qquad \qquad x_B = H(g(\underline{s}_A)), \quad y_B = \begin{cases} 1 & \text{if } ax_A + g(\underline{s}_A) \ge \theta \\ 0 & \text{if } ax_A + g(\overline{s}_A) < \theta \end{cases}$$

Moreover:

$$\mathit{Im}(\rho) = \{ V = \rho(s) : x_A \leq y_A, \ x_B \leq y_B, \ x_A = x_B = 0 \Rightarrow y_A = y_B = 0 \}$$

Element $s \in M$ satisfying condition 1-6 have one of the following images $\rho(s)$:

$$(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad (2) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad (3) \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad (4) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad (5) \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \quad (6) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Classification of CONNECT states and matricial form

For the classification we consider the following cases:

- ▶ (1-2) A(B) and B(A) turn ON at α and $t^* \in (\alpha, \beta]$ respectively
- ▶ (3-4) A(B) is OFF at β and B(A) turns ON at t^* , $\exists t^* \in (\alpha, \beta]$
- ▶ (5) A and B turn ON at $t^*, s^* \in (\alpha, \beta]$
- $C = \{ \text{ CONNECT states } \} = \{s = s(t) \text{ states satisfying one of } 1 5, \exists R \in \Phi \}$

Theorem

Let $R \in \Phi$. There is an injective map ρ

$$\rho: C \to B(2,3) \qquad \qquad x_A = H(f(\underline{s}_B)), \qquad x_B = H(g(\underline{s}_A)), \\ s \mapsto W = \begin{bmatrix} x_A & y_A & x_A \\ x_B & y_B & z_B \end{bmatrix} \qquad \qquad y_A = H(ax_B + f(\underline{s}_B))), \quad y_B = H(ax_A + g(\underline{s}_A))), \\ z_A = H(ay_B + f(\overline{s}_B))), \quad z_B = H(ay_A + g(\overline{s}_A)))$$

 $Im(\rho) = \{W : x_A \le y_A \le z_A, x_B \le y_B \le z_B, x_A = x_B = 0 \Rightarrow y_A = y_B = 0, y_A < z_A \text{ or } y_B < z_B\}$

Dynamics visualisation via the Matricial form V

The units' dynamics in R is given by 1st and 2nd rows of V

LONG states

Lemma (LONG equivalence)

If $D \ge TD$ and TD + D < TR. A state is LONG if and only if $\exists R = [\alpha, \beta] \in \Phi$

- 1. A and B turn ON at times t_A^* and $t_B^* \in R$, respectively.
- 2. $a bs_A(\beta) \ge \theta$ and $a bs_B(\beta) \ge \theta$, with $\beta = \max(R)$

Moreover, both units are ON for $t \in [\beta, t^* + D]$, turn OFF at time $t^* + D$, and are OFF $\forall t \in (t^* + D, t_{up}]$, where $t^* = \min\{t_A^*, t_B^*\}$ and $t_{up} = \min_{s \in I}\{s > t\}$.

2kTR-periodic MAIN and CONNECT states

Theorem

Any periodic state $\psi = \psi(t)$ must be 2kTR-periodic, $\exists k \in \mathbb{N}$

$$\psi(t+2kTR) = \psi(t), \quad \forall t \ge t_0, t \in \mathbb{R}$$

Definition

- ▶ M_k^S and M_k^L sets of SHORT and LONG 2kTR-periodic MAIN states
- ▶ C_k^S and C_k^L sets of SHORT and LONG 2kTR-periodic CONNECT states

Case
$$k = 1$$

Activity of A and B during I_i can be represented by matrices V_i , i = 1, 2

 \triangleright V_i depend on the delayed synaptic variables at α_i and β_i

$$s_{A}^{i-} = s_{A}(\alpha_{i} - D), \quad s_{B}^{i-} = s_{B}(\alpha_{i} - D), \quad s_{A}^{i+} = s_{A}(\beta_{i} - D), \quad s_{B}^{i+} = s_{B}(\beta_{i} - D)$$

$$\alpha_{i} = (i-1)TR, \quad \beta_{i} = (i-1)TR + TD$$

Matricial form for 2TR-periodic MAIN states

For 2TR-periodic SHORT states these delayed synaptic values depend on

$$N^{-} = e^{-(TR - TD - D)/\tau_{i}}, N^{+} = e^{-(TR - D)/\tau_{i}}, M^{-} = e^{-(2TR - TD - D)/\tau_{i}}, M^{+} = e^{-(2TR - D)/\tau_{i$$

Theorem

There is an injective map:

$$\begin{split} \rho \colon M_1^S &\to B(2,4) \\ \psi \mapsto V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} x_A^1 & y_A^1 & x_A^2 & y_A^2 \\ x_B^1 & y_B^1 & x_B^2 & y_B^2 \end{bmatrix} \end{split}$$

Where, for
$$i = 1, 2$$
, V_i is the matricial forms of ψ during the interval I_i :
 $s_B^{i\pm} = N^{\pm} y_B^i + M^{\pm} (1 - y_B^i) y_B^i$, and $s_A^{i\pm} = N^{\pm} y_A^j + M^{\pm} (1 - y_A^j) y_A^i$, $\forall i, j = 1, 2, i \neq j$
 $Im(\rho) = \{V = [V_1 | V_2] : V_1 \in Im(\rho^{I_1}), V_2 \in Im(\rho^{I_1}) \text{ satisfying } 1\text{-}4 \text{ below}\}$
1. $y_A^1 = y_B^2 = 1 \Rightarrow x_A^1 = x_B^2$ and $y_A^2 = y_B^1 = 1 \Rightarrow x_A^2 = x_B^1$
2. $y_B^1 = y_B^2 \Rightarrow x_A^1 \ge x_A^2$ and $y_A^1 = y_A^2 \Rightarrow x_B^1 \ge x_B^2$
3. $y_A^2 = 1 \Rightarrow x_B^1 \le r$ and $y_B^1 = 1 \Rightarrow x_A^2 \le r$, for any entry r in V
4. $y_A^2 = y_B^2, y_A^1 = y_B^1 \Rightarrow x_A^1 \ge x_B^1$ and $x_B^2 \ge x_A^2$

Matricial form and conditions for all 2TR-periodic SHORT MAIN states

- Using the conditions over V we find 13 possible states (algorithmically)
- Conditions for the well-definiteness of all Vs and simplification
- Add conditions contained in the LONG equivalence theorem

$$\begin{aligned} C_1 = d, \quad C_2^{\pm} = a - bM^{\pm} + d, \quad C_3^{\pm} = c - bN^{\pm}, \quad C_4^{\pm} = c - bM^{\pm}, \quad C_5^{\pm} = a - bN^{\pm} + d, \\ C_6^{\pm} = a - bN^{\pm} + c, \quad C_7^{\pm} = d - bN^{\pm}, \quad C_8^{\pm} = d - bM^{\pm}, \quad C_9 = a - bM^+ \quad C_{10} = a - bN^+ \end{aligned}$$

<i>S</i> ₁	SAB ₁	SD_1	AP	AS_1	ASD ₂	INT_1	INTD	INT
1100	1100	1100	1100	1111	1101	1111	1101	1111
0000	1100	0100	0011	0011	0011	0000	0111	1111
$C_1 < \theta$ $C_2^+ < \theta$ $C_3^+ < \theta$	$C_3^+ < \theta$ $C_8^- \ge \theta$ $C_9 < \theta$	$C_{4}^{-} \ge \theta$ $C_{2}^{-} \ge \theta$ $C_{3}^{+} < \theta$ $C_{8}^{-} < \theta$ $C_{9} < \theta$	$C_2^+ < \theta$ $C_3^- \ge \theta$	$C_{3}^{-} \ge \theta$ $C_{5}^{+} < \theta$ $C_{8}^{-} \ge \theta$ $C_{10} < \theta$	$C_{2}^{-} \ge \theta$ $C_{3}^{-} \ge \theta$ $C_{5}^{+} < \theta$ $C_{8}^{-} < \theta$ $C_{10} < \theta$	$C_1 \ge \theta$ $C_6^+ < \theta$	$C_{3}^{-} \ge \theta$ $C_{5}^{-} \ge \theta$ $C_{7}^{-} < \theta$ $C_{10} < \theta$	$C_7^- \ge \theta$ $C_{10} < \theta$

The next slides...

- Time histories and 2D regions of existence of 2TR-periodic SHORT MAIN STATES
- Examples of 2TR-periodic SHORT CONNECT and LONG MAIN states
- Cycles with higher periods and cascades
 - Period doubling of SHORT MAIN states
 - Segrated switching SHORT MAIN and CONNECT states
- ▶ MAIN states under the case D < TD and comparisons with experiments
- Numerical study with smooth inputs and gain function, and non slow-fast regime

2TR-periodic SHORT MAIN states time histories and regions of existence

- Integration at least one unit responds to both tones
- Segregation no unit responds to both tones

Theorem (Multistability)

No 2TR-periodic SHORT MAIN states can be bistable except for INTA and SAB (not shown)

2TR-periodic SHORT CONNECT and LONG MAIN states

A similar analysis can be carried out for all combinations of SHORT/LONG and MAIN/CONNECT states

Period doubling MAIN and CONNECT states

Extension to conditions for period doubling cascade using quantities

$$\begin{split} L_{k}^{-} &= e^{-(kTR - TD - D)/\tau_{i}}, \quad L_{k}^{+} = e^{-(kTR - D)/\tau_{i}}, \quad L_{0}^{\pm} = +\infty \\ S_{k} & \stackrel{A}{\underset{k}{x_{A}y_{A}^{1}}} \stackrel{B}{\underset{k}{x_{A}y_{A}^{2}}} \xrightarrow{A} & \stackrel{A}{\underset{k}{x_{A}y_{A}^{1}}} \stackrel{B}{\underset{k}{0}} \stackrel{A}{\underset{k}{0}} \stackrel{A}{\underset{k}{0}} \stackrel{B}{\underset{k}{0}} \stackrel{B}{\underset{k}{0}} \stackrel{B}{\underset{k}{0}} \stackrel{A}{\underset{k}{0}} \stackrel{B}{\underset{k}{0}} \stackrel{A$$

 $S_k = SAB_k$, SA_k and $I_k = INTD_k$, INT_k PERIOD: $T_{S_k} = 2kTR$ and $T_{I_k} = 2(2k-1)TR$

Theorem

Period doubling solutions of the other MAIN states cannot occur: AP, AS, SA, INTA

 \rightarrow similar condiderations can be made with CONNECT states

Period doubling MAIN and CONNECT states

Segregated switching MAIN and CONNECT states K_{k}^{m} and W_{k}^{m}

m=# of skipped tone and k=# of segregated cycles

Theorem

 W_m^k may exist for m <u>even</u>. K_m^k may exist for m odd

Cascades of W_k^m and K_k^m in 2D

Extension to CONNECT states c, d, g, cd, cg, dg and cdg

The case D < TD under $c - b \ge \theta$

Theorem

If $c-b \ge \theta$ these are the all possible stable states (LONG states cannot exist)

Computational analysis under smooth gain and inputs, non slow-fast scales Sidmoid $H(x) = [1 + \exp(\lambda(x-\theta))]^{-1}$ with fixed $\lambda = 30$ and τ/τ_i up to $\sim 10^{-1}$

Provide insights on the case TD + D > TR

RECAP AND MORE ...

Detailed analytical study of a rich repertoire of model states

- All possible 2TR-periodic states
- Cascades of period doubling and segregated switching
- Computational analysis under smooth conditions
- Link 2TR-periodic states with AS perceptions
 - States occupying larger region of existence
 - Quantitative agreement when varying parameters influencing AS perception
- Neuro-inspired model of AS with biophysical parameters
 - Slow inhibition masks the perception of subsequent tones during segregation
 - Fast excitation enables integration for large tones' pitch differences
- More... (not shown in this presentation)
 - Bistability via inhibitory feedback from a third, intrinsically oscillating unit
 - Study of other exotic states (cycle skipping)

Thank you!!