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Motivation - The Auditory Streaming Paradigm (AS)

The psychoacoustic perceptual experiment - pure tones A and B
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> Perception of integrated (INT) or segregated (S) rhythms

» Dependence on stimulus parameters

We explore a "minimal" firing rate model with periodic inputs driving
oscillations
» Coupled neural CPG oscillators (Rubin & Terman, 2000)

» Perceptual rivalry via adaptation or synaptic depresstion (Shpiro et al,
2009)
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Outline of the talk

» Model description
» Analyse symmetry and parameter constraints

> Analitical approach to classify dynamics (slow-fast
decomposition)

» Exhaustive study of states in the space of parameters
> Interpretation of states with AS perceptions

» Show similarity with AS experiments

» Show a rich repertoire of dynamical states

» Computational analysis under smooth conditions



Model description

Two periodically forced neural populations (A and B) coupled by fast direct
excitation and slow delayed inhibition

Periodically forced system of 4 delay differential

equations:

: Tua(t) = —ua(t)+H(aug(t)—bsg(t—D)+cia(t—
TUB(t) = —UB(t)+H(auA(t)—bSA(t—D)—f—CI'B(t—
Sa(t) = Hua®)(A—sa(0))/7—sa(t)/7

)
se(t) = H(us(t))(1—ss(t))/7—ss(t)/i

1, ifx>46
0, otherwise

Heaviside activation H(x) = {
Slow-fast regime 7/7; <<1

Parameters: activity threshold 6 € (0, 1), synaptic strengths a and b, input
strength ¢ and onset tp, inhibition time scale 7;, activity time scale 7
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Periodic square-wave inputs

ia(t) =200 le(t) +v32 Xlg(t)
is(t) =v3 2, X/;(t) + > o X/g(t)

xi(t) =1 for t € | and 0 otherwise, and scaling parameter v (d=vc)
IX=[a%, Br]=[2kTR,2kTR+TD], I5=[af, B¢]=[(2k+1) TR, (2k+1) TR+TD]

Where TD=tones' duration and PR=1/ TR=tone repetition rate.

1 A B A B A B
—_— = = == = = — i
TR A
{ l ‘ — ig(t)
0 TD
Lto=a,\°=onset o kBAk o kBBk Time
Ia lg

» Mimic stereotyped neural responses from Macaque auditory cortex (AC)

» Populations A and B are assumed to be located downstream AC

We introduce a bit of notation:

®={RCR:R=/lorR=1I},3keN}, I=[]JR
Re®



7 equivariance - asymmetrical cycles exist in pairs

Rewrite the model as a non-autonomous dynamical system

v(t) = f(v(t),ia(t),is(t)), v=(ua,us,sa,ss)
Map « swaps A and B indexes in the system'’s variables

k:v = (ua,us,sa,Ss,ia,ig) — (UB, Ua, SB, SA, iB, ia)

Apply TR time shift on the inputs

ia(t+TR)=ig(t) is(t+TR)=ia(t), VteR
We have Zs-equivariance under transformation x and TR time shift

k(F(v(t),ia(t),is(t)))=Ff(s(v(t+ TR), is(t+ TR), ia(t+ TR)))

Main conclusion: any 2nTR-periodic asymmetrical cycle (not in-phase nor
anti-phase) has a co-existing k-conjugate cycle k(v(t+ TR))



Constraining model into a realistic range of parameters

With no inputs (ia = ig = 0) there are two possible equilibria: a low-activity
state P = (0,0,0,0) and a high-activity state Q@ = (1,1,1,1).
If a— b >0 then P and Q co-exist, and dynamics is trivial

> If ¢ < 0: trajectories starting in the basin of P (Q) end in P (Q)

» ¢ > 0: any trajectory converges to Q

To avoid this unrealistic scenario
1. a— b < 0 — P is the only equilibium without inputs (no saturation)
2. ¢ > 0 — units activate in the absence of inhibition (b = 0)

In addition, we consider input parameters contraints
» PR € [1,40]Hz: physiological conditions tested in experiments
» TR> TD: No active tone overlap ;N I, =0, Vi#jeN

> df € [0,1] defined as v = v(df) = (1 — df*/™) to model the tone pitch
difference



The fast and slow subsystem at fixed time t € /%

Change variables to the fast time scale r = t/7, 7 — c©

UIA = —UA+H(2UB—bSB(t—D)+C)
U/B = —uB+H(auA—bsA(t—D)+d)
sp = H(ua)(l—sa)
se = H(us)(1~ss)

Where " = d/dr. Units can be OFF (~ 0), ON (~ 1), or turning OFF or ON
» Synaptic variables may jump up or be constant (if A and B unit OFF)
Slow-dynamics
s$= —S/T,'

— s is decreasing (on either time scales) except when the units turn ON
Dynamics in R—/ (c=d=0) is simple, WLOG 353 >0, 54 >0 (at steady state)

U —ua + H(aug—bsg)
U;; — —ug + H(aUA—bgA)

(0,0) is always a FP and Q = (1,1) FP if and only if a—b354>6 and a—bsg >0



Dynamics in the intervals with no inputs (R—/)

Theorem
Foranyt >ty R—1I:
1. If A or B is OFF at time t, both units are OFF in (t,t"], where t* is:

t* =min{s >t
sel{ }
2. If A or B is ON at time t, both units are ON in [t.,t), where t. is:
t. = max{s <t
* sel { }
k

ls

R-1 R-1

Activity

t. t* Time
Consequence: no unit can turn ON in R—/.
Definition (LONG and SHORT states)

» LONG - if at least one unit is ON at time t, 3t > to € R—/
» SHORT - if both units are OFF Vt > to € R—/



Synaptic decay and no saturated states if TD+D < TR

Lemma
Assume TD+D < TR. Defined I as:

Fr={LCR:L=][o},ak+D]orL=][af,af+D], Ik € N}

sa(t—D) and sg(t— D) are monotonically decreasing in L, VL € T.

Lemma
If TD+D < TR both units are OFF Yt € J, where:

J=JB+D. af U (BE+D, afis]
keN

Bia®+D BA+D * Start from (0,0)
. u

EJ\

Activity
[
—

ot B, o+D o B «’+D Time



Dynamics in the the active tone intervals | assuming D > TD

If D > TD the delayed synaptic variables are constant on the fast time scale
(equal to 1 or exp decaying). For t € IX (A tone active phase):
upy = —ua+ H(aug—bsg + c)
ug = —ug+ H(aua—bsa+d)
Where 54 = sa(t — D) and g = sg(t — D). Four possible FPs
1. (0,0) <> c < bSg+ 0 and d < bSa + 6
2. (1,0) <> c>bsg+0and a+d < bss+ 6
3. (0,1) <> a+c< bSg+ 0 and d > bsa+ 0
4. (1,1) < a+c>bsg+60anda+d>bsa+6

El



Basin of attraction of (0,0) and (1,1)

We note that only (0,0) and (1,1) can coexist if a > 0. We can rewrite system

upn = —ua+ S(ug—s2)
—ug + S(ua — s1)

=
w
I

s1 = (bSa—c+0)/a, s = (bSg—c+0)/a

O0<sik<lfork=12

> (s1,s2) is a degenerate saddle
point where separatrices originate

> (1,0) and (0, 1) converge to (1,1)




Differential convergence to (1,1)

Consider conditions when (1,1) is the only FP and an orbit starting from (0, 0)
1. ¢— bSg>6 and d—b54>6 both units turn ON simultaneously
uyn = 1—ua
ug = 1—ug

2. c—b5g>0, d—b5g <0 and a+d—b54>0 A turns ON before B
Indeed Ju™* € (0, 1] for which:

au,+d—bsSa=0
From the first condition the fast subsystem reduces to:

uy = 1—up
!

ug = —UB—|—H(3UA—b§A+d) - _UB+77(UA)

> us(r) — 1 exponentially reaching point u* at time r* =log[(1—u*)"1]
> n(ua(r))=0, Vr<r*
> n(ua(r))=1, Vr>r*, and ua(r) — 1 following A dynamics at r =0

Back to t=7r the B unit turns ON an infinitesimal delay 6 = 7r* after A.
3. d—bSa>0, c—b54 <0 and a+c—b3g >0 equal to 2 by swapping A and B.



Single OFF to ON transition during each active tone interval R € ¢

Lemma

Assume TD+D < TR and D>TD. Let R = [, 5] € ®, and A (B) be ON at
time t € R, then

(1)A(B)isONVs>t, seR

(2) 3lt* € R when A (B) turns ON

(3) sa(t—D) (sg(t—D)) is decreasing in [c, t*+ D]

Activity
|

a=tg" ty ~tg"+D Time
Lemma
1. A (B) turns ON at time o < A (B) is ON V't € («, f]

2. A (B) if OFF at time B < A (B) is OFF Vt € R



MAIN and CONNECT states

Definition
Assume TD+D < TR and D> TD. A solution (state) is:
> MAIN if VR € &, if 3t* € R turning ON time for A or B, then t* =min(R)

» CONNECT if 3R € ® and 3t* € R, t* >min(R) turning ON time for the A

or the B unit
MAIN CONNECT
=
z
B R R
<

Time Time



Classification of MAIN states

From the FP conditions of the fast system - dynamics in R = [, 3] € ®

> Both units turn ON at time « - (1, 1) is the only FP at time «.
1. f(sg)>0,g(sy)>6 — both units instantaneously turn ON
2. g(sa)<0, f(sg)>0 and a+g(s,)>6 — B turns ON after A
3. f(sg)<0, g(s4)>6 and a+f(sg)>0 — A turns ON after B

»> A(B) turns ON at « and B(A) is OFF at
4. f(sg)>0, at+g(3a)<0 — (1,0) FPin R
5. g(sa)>0, a+f(58)<0 — (0,1) FPin R

Activity

» Both units are OFF at § (0,0) FP at 3:
6. g(54)<06 and f(58) <6

a B Time

c—bs, if R=I% d—bs, if R=I%
f(s)= o o 8(s)= o ik
d—bs, if R=Ig c—bs, if R=Ig

sa=sa(a=D), 3Sa=sa(f-D), sg=ss(a—D), 3s=ss(8-D)

M = { MAIN states } = {s = s(t) states satisfying one of 1 — 6,VR € ¢}



Matricial form of MAIN states

Theorem
Let R € ®. There is an injective map p

1 ifaxg+f(sg)>0
. =H(f 5 = )
p: M = B(2,2) XA (f(sg)), ya {0 if axg + f(38) <
v [XA }’A:|

1 ifaxa+g(s,)>0
X8 yB xg=H(g(s,)), yB_{ atg(sa)=

0 ifaxA+g(§A) <6
Moreover:

Im(p) ={V = p(s) : xa < ya, xg < y8, xa=xg = 0= ya = yg = 0}

Element s € M satisfying condition 1 — 6 have one of the following images p(s):

oh ] @l @fa] wlo @i ef



Classification of CONNECT states and matricial form

For the classification we consider the following cases:
> (1-2) A(B) and B(A) turn ON at « and t* € («, 3] respectively
> (3-4) A(B) is OFF at 5 and B(A) turns ON at t*, 3t" € (o, §]
> (5) A and B turn ON at t*,s™ € (a, ]

C = { CONNECT states } = {s = s(t) states satisfying one of 1 — 5,3R € ¢}

Theorem
Let R € ®. There is an injective map p

p: C — B(2,3) xa=H(f(sg)), xg=H(g(s4)),
< _[xa ya xa ya=H(axg+f(sg))), ye =H(axa+g(s4))).
o W= {XB ¥B ZB} za=H(ays+f(38))), z8=H(aya+g(54)))

Im(p)={W : xa<ya<za,xg<yg<zg,xa=x8=0= ya=yp=0,ya<za or yg<zg}



Dynamics visualisation via the Matricial form V

The units’ dynamics in R is given by 1st and 2nd rows of V

0 1 - Matricial Forms - 0 01
1 1 1 1 1
MAIN CONNECT
:
R R
abd B Time a t B Time

R=[0,8]u[5,8] R=[a,6]u[6,tTult*p]



LONG states

Lemma (LONG equivalence)
If D>TD and TD+D < TR. A state is LONG if and only if 3R = [o, §] € ®

1. A and B turn ON at times t} and tg € R, respectively.
2. a—bsa(B) > 0 and a—bsg(B) > 6, with B=max(R)

Moreover, both units are ON for t € [3,t*+ D], turn OFF at time t*+D, and
are OFF Vt € (t" 4D, typ], where t* = min{tx, tz} and tu,, = minse/{s > t}.

a B

Activity
pel

t(ta~ts) t'+D typ  Time



2k TR-periodic MAIN and CONNECT states

Theorem
Any periodic state 1 =1 (t) must be 2kTR-periodic, 3k € N

Y(t+2kTR) = ¢(t), Vt>to,t €R
Definition
> M and MF - sets of SHORT and LONG 2kTR-periodic MAIN states
> C? and C} - sets of SHORT and LONG 2kTR-periodic CONNECT states

Case k=1
Il |2
@ @ 9 @ 0
0 TD TR TR+TD 2TR
» Activity of A and B during /; can be represented by matrices V;, i = 1,2

» V; depend on the delayed synaptic variables at «; and 3;
sif:sA(a,-fD), sg =sg(a;—D), 52+:5A(/3i*D)7 SEr:SB(ﬁi*D)
ai=(i—-1)TR, Bi=(i—-1)TR+TD



Matricial form for 2 TR-periodic MAIN states
For 2 TR-periodic SHORT states these delayed synaptic values depend on

N~ = e~ (TR-TDD)/7i £+ — o=(TRD)/7i pg= :ef(ZTRfTELD)/T,-’ Mt = g~ QTRD)/7;
Theorem
There is an injective map:

p: M — B(2,4)

1 1
b V=W | vz]ztzg g

X YB
Where, for i=1,2, V; is the matricial forms of ¢ during the interval I;:
=NEy M= (1-yg)ys, and si"=NTydM>(1-ya)ya, Vi, j=1,2,i#]

m(p) ={V = [Va ‘ Vo] Vi€ Im(p't), Vo € Im(p™) satisfying 1-4 below}
1. yA1:y§:1:>X}\:X§ andyﬁ:}/é:].éXi:Xé
2. yp=yb = xi>x; and yi = yi = xg > x
3.yi=1=xi<randyi=1= x3<r, foranyentryrinV
4. yi=yk yi=ys = xi>xp and xg > x}



Matricial form and conditions for all 2 TR-periodic SHORT MAIN states

» Using the conditions over V we find 13 possible states (algorithmically)
» Conditions for the well-definiteness of all V's and simplification

» Add conditions contained in the LONG equivalence theorem

Gi=d, Cf=a—bM*+d, Ci=c—bN*, Ci=c—bM* CF=a—bN*+d,
CE=a—bN*+c, CF=d—bN*, CFf=d—bM* Co=a—bM" Cio=a—bN*

51 SAB; SDy AP AS; ASD> INT, INTD INT
1100 1100 1100 1100 1111 1101 1111 1101 1111
0000 1100 0100 0011 0011 0011 0000 0111 1111

Cq 20 G, >0 B
G >0 C; >0
G<O | Cf<b| ¢y >0 N ;>0
+ _ G <0| <o G20 | >0 ¢ >0
G<b| CG>0| GF<o| ~ Gh<o| .
Ch<o| Co<o G 20| G520 CE<0| ¢ <p| Go<o
9 - —
3 Cg <0 Cro<0 Cg <0 Cro< 0

Cg<l9 C10<9




The next slides...

» Time histories and 2D regions of existence of 2 TR-periodic SHORT MAIN
STATES

» Examples of 2TR-periodic SHORT CONNECT and LONG MAIN states

» Cycles with higher periods and cascades

» Period doubling of SHORT MAIN states
» Segrated switching SHORT MAIN and CONNECT states

» MAIN states under the case D < TD and comparisons with experiments

» Numerical study with smooth inputs and gain function, and non slow-fast
regime



2 TR-periodic SHORT MAIN states time histories and regions of existence

SA SEGREGATION SAB
1 1

0 0

SABD AP
: H\ : FV:FEC
o

0
As ASD

1 Hf—zcﬁ 1 VQKQFE

0 0

BOTH

INTA INTEGRATION INTD
1 1
0 4
o ™ TR TR+TD
v v
INT D TR+D
1 z
2 —u,]
£ —u
g d
0 < s
o 1o TR TR+TD Time A
' v —
D TR+D

> Integration - at least one unit responds to both tones

» Segregation - no unit responds to both tones

Theorem (Multistability)
No 2TR-periodic SHORT MAIN states can be bistable except for INTA and

SAB (not shown)



2 TR-periodic SHORT CONNECT and LONG MAIN states

A similar analysis can be carried out for all combinations of SHORT/LONG

and MAIN/CONNECT states

STABILITY REGIONS OF MAIN-CONNECT STATES

M MAIN states [l other states

STABILITY REGIONS OF MAIN-LONG STATES

t

05 c

w

Il LONG-CONNECT states [ other states

APcAS

ﬁ_

\‘——

SABDL




Period doubling MAIN and CONNECT states

Extension to conditions for period doubling cascade using quantities
L= (WTRTDD)/mi [+ _ o= (TRD)/7i 2 g

A B A BA B A BABA B
Sk XAVE XAVE  —» Xiyi 0 0 xayi — Xiyi 0000 x3y3
xéyé x§y§ xé‘yé 00 xéyé xéyé 0000 xéyé
A B A BA B _AB A BABA B_ABAB
Iy XAVa Gya Xava 00 x2y2 00 X3y 0000 x3y20000
xpyh X3y xgyA 0 0 x3y3 00 xgyE 0000x3y3 0000

Sk =SABy, SAk and Iy =INTD,, INT,  PERIOD: Ts, =2kTR and T; =2(2k—1)TR

Theorem
Period doubling solutions of the other MAIN states cannot occur: AP, AS, SA, INTA

— similar condiderations can be made with CONNECT states



Period doubling MAIN and CONNECT states

Period/2TR
6

50
zoom y-section at DF=0.8
x BN\ koo
& - L LD
= - Zl;, 1 L LD
-8 - - — 1414 Zl13 I13 zI-
= — 12
a b
Y ZgRULD DL cLD
.- Hha Z513513 zsh; S
10
0. 0.503

C



Segregated switching MAIN and CONNECT states K" and W/"

m=+# of skipped tone and k=# of segregated cycles

Kk - example with k=2, m=3 T=(m+2k)TR
Wi ] — ‘T
| | L —t -
H A A A
B A . B A B A
11 .10 1 0 1
01 . 1011 0 1
k
m
W, - example with k=1, m=2 T=2(m+2k)TR
[ - =i ~ -
| [N L V ( |\ [
B e N o Y s I e U o N s Y s O o I o O o
B A . A B A B A B .. B A B A
11 .. 1010 0 001 0|1 0 1
01 . (0] 1] .0 1] 11 0| 0 0 0
D —— - =
m m

Theorem
WX may exist for m even. KX may exist for m odd



Cascades of W, and K| in 2D

0.5
& 0.45
0.4

0.35

STATES OTHER THAN W, OR Ky,

SABD Fixed C=2.1
SeSABD
Wi
. k=2
Wia | |k=3 W,  cascade with period
Ty =4(1+2k)PR
w:.,!
Vi | k=4
W I )
k=5
|]'<?57
[t}
. .
I SA
5 10 15 20 25
Period/2TR

Extension to CONNECT states ¢, d, g, cd, cg, dg and cdg



The case D< TD under c—b > 0

Theorem

If c—b > 6 these are the all possible stable states (LONG states cannot exist)

INTS

APcAS(B)
1 T {ﬂr |
0
TR TR+D]
TRATD

o o, TR mwé
™ TRHTD

—u, —ug 5, ——S

2

L

©

<

Time

MODEL
SEGREGATION

AP

INTS
INTEGRATION ASCINT
INTD
o LINT
3 PR (Hz) 25
EXPERIMENTS
SEGREGATED
df
BISTABILITY
INTEGRATED
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Computational analysis under smooth gain and inputs, non slow-fast scales
Sidmoid H(x) = [1+exp(A(x—0))]~* with fixed A=30 and 7/7; up to ~ 107*

4 - AS HIGH

df

2 -BOTH 5 - HIGH ACTIVITY

df

0 21R

df

0
1 40

PR

Provide insights on the case TD+D> TR



RECAP AND MORE...

» Detailed analytical study of a rich repertoire of model states
» All possible 2 TR-periodic states
» Cascades of period doubling and segregated switching

» Computational analysis under smooth conditions
» Link 2 TR-periodic states with AS perceptions

> States occupying larger region of existence
» Quantitative agreement when varying parameters influencing AS perception
» Neuro-inspired model of AS with biophysical parameters
» Slow inhibition masks the perception of subsequent tones during segregation
> Fast excitation enables integration for large tones’ pitch differences
» More... (not shown in this presentation)

> Bistability via inhibitory feedback from a third, intrinsically oscillating unit
» Study of other exotic states (cycle skipping)



Thank you!!
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