## Path-dependent, shrinking, moving targets and beyond, on generic self-affine sets

Henna Koivusalo (joint with Lingmin Liao and Michał Rams)

University of Bristol

The game

## The game

- $A_{n} \subset X$ and $(T, X)$,

$$
\left\{x \in X \mid T^{n}(x) \in A_{n} \text { for infinitely many } n\right\}
$$

## Question

How big is the shrinking target set for a given sequence $A_{n}$ ?

## Shrinking targets


$\Rightarrow \lim \sup \left\{x \mid T^{n}(x) \in A_{n}\right\}$

Path-dependent target size


$$
\lim \sup \left\{x \mid T^{n}(x) \in A_{n}(x)\right\}
$$

Moving targets


$$
\triangleright A_{n}=B\left(y_{n}, r_{n}\right)
$$

## Some earlier work

- Hill and Velani
- Bugeaud and Wang
- Li, Wang, Wu, Xu
- Reeve
- K. and Ramìrez
- Barany and Rams


## Space and time

## Self-affine sets

$>$ iterated function system: $f_{1}, \ldots, f_{N}$ affine contractions $f_{i}=A_{i}+a_{i}$
$>$ self-affine set: unique, non-empty, compact

$$
\Lambda=\bigcup_{i=1}^{N} f_{i}(\Lambda)
$$

$>$ assumption: the union is disjoint (strong separation condition) and $\left|A_{i}\right|<\frac{1}{2}$

## Symbolic dynamics

$\Rightarrow$ symbolic space: $\Sigma=\{1, \ldots, N\}^{\mathbb{N}}$
$\Rightarrow$ shift: $\sigma\left(i_{1}, i_{2}, i_{3}, \ldots\right)=\left(i_{2}, i_{3}, \ldots\right)$
$>$ projection: $\pi: \Sigma \rightarrow \Lambda$ (bijection)

- cylinder:

$$
\left[\left.\mathbf{i}\right|_{n}\right]=\left\{\mathbf{j} \in \Sigma|\mathbf{j}|_{n}=\left.\mathbf{i}\right|_{n}\right\}
$$



## Expanding dynamics


$>T: \Lambda \rightarrow \Lambda: \pi \circ \sigma=T \circ \pi$

## Dimensions of self-affine sets

- Hausdorff measure

$$
\mathcal{H}^{s}(\Lambda)=\liminf _{\delta \rightarrow 0}\left\{\sum_{i=1}^{\infty} \operatorname{diam}\left(B_{i}\right)^{s} \mid \Lambda \subset \cup_{i=1}^{\infty} B_{i}, \operatorname{diam} B_{i}<\delta\right\}
$$

- Hausdorff dimension

$$
\operatorname{dim}_{H} \Lambda=\inf \left\{s \mid \mathcal{H}^{s}(\Lambda)=0\right\} .
$$

## Dimensions of self-affine sets

$>$ length of a finite word $\mathbf{i}$ : $|\mathbf{i}|$

- pressure

$$
P(s)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s}(\mathbf{i})
$$

$\Rightarrow \phi^{s}(\mathbf{i})$ the singular value function of $f_{\mathbf{i}}=f_{i_{1}} \cdots f_{i_{n}}$

## Theorem (Falconer, Solomyak)

Assume $\left|A_{i}\right|<\frac{1}{2}$. For Lebesgue almost all $a_{1}, \ldots, a_{N}$

$$
\operatorname{dim}_{H} \Lambda=s_{0}: P\left(s_{0}\right)=0
$$

## Upper bound for dimension: singular value function



$$
\phi^{s}(f)=\alpha_{1} \ldots \alpha_{\lceil s\rceil} \alpha_{\lfloor s\rfloor}^{\{s\}} \sim \# \cdot \alpha_{\lfloor s\rfloor}^{s} \Rightarrow \mathcal{H}^{s}
$$


$\# \sim \frac{\alpha}{\alpha_{2}}$

## Shrinking targets on self-affine sets

$\Rightarrow$ Recall $T: \Lambda \rightarrow \Lambda, T \circ \pi=\pi \circ \sigma$

- symbolic shrinking target set: $\mathbf{j} \in \Sigma, \ell_{n}(\mathbf{i}) \rightarrow \infty$

$$
R(\mathbf{j})=\left\{\mathbf{i} \in \Sigma \mid \sigma^{n}(\mathbf{i}) \in\left[\left.\mathbf{j}\right|_{\ell_{n}(\mathbf{i})}\right] \text { for infinitely many } n\right\}
$$

$\Rightarrow$ shrinking target set on $\Lambda: \pi(\mathbf{j})=y \in \Lambda$,

$$
R^{*}(y)=\left\{x \in \Lambda \mid T^{n}(x) \in \pi\left[\left.\mathbf{j}\right|_{\ell_{n}(i)}\right] \text { for infinitely many } n\right\}
$$

- satisfies:

$$
R^{*}(y)=\pi(R(\mathbf{j}))
$$

Michal, 09:43
well, I know things are varying there over time and space, but I do not grasp the flow

Michal is typing ©

## The story

## Lower bounds for shrinking target sets

$$
R(\mathbf{j})=\bigcap_{k=1}^{\infty} \bigcup_{n \geq k}\left\{\mathbf{i} \in \Sigma \mid \sigma^{n}(\mathbf{i}) \in\left[\left.\mathbf{j}\right|_{\ell_{n}(\mathbf{i})}\right]\right\}
$$

$\Rightarrow$ dimension lower bounds via

- Cantor subset $C \subset R(\mathbf{j})$
$\Rightarrow$ mass distribution $\mu$ on $C$ with $\pi_{*} \mu$ of finite energy



## K. and Ramìrez

Recall Falconer: for Lebesgue almost all translations, the dimension of a self-affine $\Lambda$ is

$$
s_{0}: P\left(s_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s_{0}}(\mathbf{i})=0
$$

$\Rightarrow$ non-path-dependent target size: $\ell_{n}(\mathbf{i})=\ell_{n} \rightarrow \infty$

- modified pressure:

$$
P(s, \mathbf{j})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s}\left(\mathbf{i} \mid \ell_{n}\right)
$$

## K. and Ramìrez

Recall Falconer: for Lebesgue almost all translations, the dimension of a self-affine $\Lambda$ is

$$
s_{0}: P\left(s_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s_{0}}(\mathbf{i})=0
$$

non-path-dependent target size: $\ell_{n}(\mathbf{i})=\ell_{n} \rightarrow \infty$

- modified pressure:

$$
P(s, \mathbf{j})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s}\left(\mathbf{i} \mid \ell_{n}\right)
$$

## Theorem (K. and Ramirez)

Assume $A_{i}$ satisfy a quasimultiplicativity assumption and $\left|A_{i}\right|<\frac{1}{2}$. For almost all translations with strong separation condition, for typical $\mathbf{j} \in \Sigma$,

$$
\operatorname{dim}_{H} R^{*}(\pi(\mathbf{j}))=s_{0}: P\left(s_{0}, \mathbf{j}\right)=0
$$

the mass is distributed according to $\phi^{s}$ and


## Path-dependent: Friday Theorem

path-dependent target size: $\ell_{n}(\mathbf{i})$ only depends on the first $n$ symbols and is approximately additive on finite words:

$$
\left|\ell_{\mathbf{i}|+|\mathbf{k}|}(\mathbf{i k})-\ell_{\mathbf{i} \mid}(\mathbf{i})-\ell_{|\mathbf{k}|}(\mathbf{k})\right|<K
$$

- $\mathbf{j}$ a typical point for some ergodic measure on $\Sigma$ :
$Z(\mathbf{j})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \phi^{s}\left(\left.\mathbf{j}\right|_{n}\right)$ exists and is independent of $\mathbf{j}$ modified pressure:

$$
P(s, \mathbf{j})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s}\left(\left.\mathbf{i}\right|_{\ell_{n}(\mathbf{i})}\right)
$$

## Path-dependent: Friday Theorem

path-dependent target size: $\ell_{n}(\mathbf{i})$ only depends on the first $n$ symbols and is approximately additive on finite words:

$$
\left|\ell_{\mathbf{i}|+|\mathbf{k}|}(\mathbf{i k})-\ell_{\mathbf{i} \mid}(\mathbf{i})-\ell_{|\mathbf{k}|}(\mathbf{k})\right|<K
$$

$1 \mathbf{j}$ a typical point for some ergodic measure on $\Sigma$ :
$Z(\mathbf{j})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \phi^{s}\left(\left.\mathbf{j}\right|_{n}\right)$ exists and is independent of $\mathbf{j}$ modified pressure:

$$
P(s, \mathbf{j})=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{|\mathbf{i}|=n} \phi^{s}\left(\left.\mathbf{i}\right|_{\ell_{n}(\mathbf{i})}\right)
$$

## Theorem (K., Liao, Rams)

Standing assumptions. For almost all translations, for typical j,

$$
\operatorname{dim}_{H} R^{*}(\pi(\mathbf{j}))=s_{0}: P\left(s_{0}, \mathbf{j}\right)=0
$$

the mass distributed according to $\phi^{s} \cdot \exp (Z(\mathbf{j}) \ell)$ and


## Moving targets: The Wednesday Theorem

$>$ moving, non-path-dependent target: ( $\mathbf{j}_{n}$ ) a sequence in $\Sigma$
$>$ non-path-dependent target size: $\left(\ell_{n}\right)$

## Theorem (K., Liao, Rams)

Assume $A_{i}$ satisfy a quasimultiplicativity assumption and $\left|A_{i}\right|<\frac{1}{2}$. For almost all translations with a strong separation condition, the dimension of the shrinking target set is given by the liminf pressure.

Moving targets: The Wednesday Theorem
the mass distributed according to $\phi^{s}$ and


## And beyond

$\Rightarrow$ moving AND path-dependent?
recurrence?

- quasimultiplicativity?
$>$ non-generic translations?

