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Dynamical system as a stochastic process

Definition
Given a dynamical system (T ,X , µ) we define a stochastic process

Xn = ϕ ◦ T n(x)

where ϕ : X → R is an observable representing some physical quantity
which can be measured and holds some regularity.

In modeling deterministic physical phenomenon, T is usually taken as
ergodic and measure-preserving and µ a probability measure.
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Extreme values

Definition
Given a sequence of random variables X1, ...,Xn we define the maxima of
the system by,

Mn = max{X1, ...,Xn}

In this setting we can investigate the statistical properties of (Mn)
such as distributional and almost sure convergence limits.
These statistical properties depend on our choice of observable.
In extreme value literature, ϕ = f (d(x , p)) for x ∈ X and some
distinguished point p ∈ X where f is usually monotone decreasing
with supx ϕ(x) = ϕ(p).
Let S the set where ϕ(x) reaches its supremum. (S = {p} above)
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Extreme Value Law (EVL)

Definition
Let (un) be a sequence of constants defined by the requirement that
limn→∞ nµ(X1 > un) = τ and X1, ...,Xn be i.i.d random variables then,

lim
n→∞

µ(Mn ≤ un) = e−θτ

where θ ∈ [0, 1] is called the extremal index where 1
θ roughly measures the

clustering of exceedences of the maxima.
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Dependence Conditions

Definition (Leadbetter (mixing condition))
Condition D(un): Given the sequence X1, ...,Xn, for any integers
i1 < ... < ip and j1, ..., jk for which j1 − jp > t, and any large n ∈ N,

|Fi1,...,ip ,j1,...,jk (un)− Fi1,...,ip(un)Fj1,...,jk (un)| ≤ α(n, t)

uniformly for every p, k ∈ N, where Fi1,...,ip denotes the joint distribution
function of Xi1 , ...,Xip and α(n, tn)→ 0 as n→∞ for tn = o(n).

Definition (Leadbetter (recurrence condition))
Condition D ′(un): Given the sequence X1, ...,Xn there exists a sequence
kn such that k →∞, limn→∞ knα(n, tn) = 0 and kntn = o(n) and,

lim
n→∞

bn/knc∑
j=1

P(X1 > un,Xj > un) = 0
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Previous Work

EVL results for classical observables of the form ϕ(x) = f (d(x , p)) for
some point p ∈ X

Under D(un) and D ′(un) an extreme value law exists for non-uniformly
expanding maps. (Nicol, Holland, Torok (2012))
For certain one-dimensional uniformly expanding maps, θ = 1 if p is
not periodic and θ < 1 otherwise. (Ferguson, Pollicott (2012))
Dynamical variations of D(un) (Д(un)) and D ′(un) (Д′(un)) were
introduced. (Freitas, Freitas, Todd (2010))
θ = 1 a.e. x for Sinai Dispersing Billiards with non-periodic point p.
(Haydn, Freitas, Nicol (2014))
θ < 1 for Sinai Dispersing Billiards with periodic point p. (C., Nicol,
Zhang (2018))
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In extreme value literature ϕ = − log d(x , p) is often used, however,
scaling can translate results for one observable to another provided S
remains unchanged.
If S does change, there are no known translation results.
As we have seen, even in the case when p changes (e.g. p periodic,
versus p non-periodic), extreme value results have been shown to
change.

Can we extend EVL results to observables with more physical relevance
where S is represented by a curve rather than a point?
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Previous Work

Results for certain Anosov diffeomorphisms for observables of the form,

ϕ(x , y) = 1− |x − xM |a − |y − yM |b

and
ϕ(x , y , z) = ax + by + cz + d

using the geometry of the level sets ϕ(x , y) > un and the geometry of
the underlying attractor. (Holland, Vitolo, Rabassa, Sterk, and Broer
(2012))
Observables of the form ϕ = − log d(x , L) where L is a line were
investigated in the setting of two-coupled expanding maps (Keller and
Liverani (2009)) and N-coupled expanding maps (Faranda, Ghoudi,
Guiraud, and Vaienti (2018)).
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Some remarks

In order to establish an extreme value law (EVL) for the following
systems, we need to show conditions Д(un) and Д′(un) hold.
Condition Д(un) is a somewhat standard decay of correlations
argument and will not be checked here.
The novelty of these (and many proofs) come from showing Д′(un)
holds.
Д′(un) looks at ensuring,

lim
n→∞

∑
j

µ(Un ∩ T j(Un)) = 0

where Un = {x : ϕ(x) > un}
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Anosov System

Suppose that (T ,X , µ) is an Anosov system. Further, consider the Arnold
Cat Map of T2 induced by the matrix,

T =

(
2 1
1 1

)

v−

v+

This matrix has two eigenvalues |λ+| > 1 and |λ−| < 1.
Any v = αv+ + βv− and v (n) = DT nv = αλn+ + βλn−.
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Theorem (C., Holland, Nicol)
Let (T ,X , µ) be an Anosov system, and consider the observable function
ϕ(x) = − log(|x · v − c|) where x = (x1, x2) ∈ R2, v = (v1, v2) ∈ R2,
c ∈ R. Then S := {x ∈ R2 : x · v = c}. We have the following:

1 Suppose that v 6= {v+, v−}. Then

lim
n→∞

µ(Mn ≤ un) = e−τ . (1)

2 Suppose that v = v+ or v = v−, and S contains no periodic points.
Then equation (1) applies.

3 Suppose that v = v+ or v = v−, and S contains a periodic point p of
prime period q. Then,

lim
n→∞

µ(Mn ≤ un) = e−θτ .

where θ = 1− 1
λq+

.
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Checking condition Д′(un): case 1.

The sets Un = {ϕ(x) > un} are defined by a rectangular box around the
line defined by S := {x ∈ R2 : x · v = c}.
case 1. α 6= 0 and β 6= 0

v−

v+v

x · v = c

Un

O( 1
n )

O(λ
−j

n )

T jUn ∩ Un

There are approximately λj intersections of T jUn into Un.
We estimate

∑
j µ(T jUn ∩ Un) = O(λj · λ−j

n
1
n ) = O( 1

n2 ).
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Checking condition Д′(un): case 2. (non-periodic)

case 2. a. β = 0 then v aligns with v+

v−

v+v

x · v = c

Un

Similar to case 1.
We will not cover case 2. b. v aligns with v−.
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Checking condition Д′(un): case 3. (periodic)

Let p be a periodic point in S of prime period q.
Aq
n = {ϕ > un, ϕ ◦ T < un, . . . , ϕ ◦ T q < un}

Geometrically, Aq
n consists of two small outer parallel strips in Un of

width (1/n)( 1
λq+

).

The proof of is the same as in the case of no periodic orbits where Aq
n

plays the role of Un.
By definition,

θ = lim
n→∞

µ(Aq
n)

µ(Un)
= 1− 1

λq+
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Sinai dispersing billiard model with finite horizon

Sinai Dispersing Billiard Animation
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Sinai dispersing billiard model with finite horizon

θv

n

r

Illustration of the reduction to the billiard map for a single collision point.
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Theorem (C., Holland, Nicol)
Let T : X → X by a planar dispersing billiard map with finite time horizon.
Suppose ϕ(r , θ) = 1− |r − r0| where x = (r , θ) gives ϕ(x) = 1− dH(x , L).
Assume L is not in the stable or unstable cone. Then,

lim
n→∞

µ(Mn ≤ un)→ e−τ

Remark
With this choice of ϕ the set S is a line so that Un = {x : ϕ(x) > un}
forms a rectangle around S. The hyperbolic properties of the billiard map
make this similar to the Anosov case with two main difficulties:
non-uniform expansion and the presence of singularities in the space.

Chaotic Billiards (Chernov, Markarian (2006))
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Checking condition Д′(un)

short returns

rθ Un

αi

rθ Un

Consider the set of all points on X which will not hit a singularity in
j = C log n iterates.
Map these backward and look at their intersection with our line r = r0.
All rectangles Ri with side length αi <

1√
n
are ignored since any

intersection with them decays quickly.
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Checking condition Д′(un)

short returns

rθ Un

αi

rθ Un

Any set inside Un can intersect Un at most one time by Λj/n = 1 and
solving for j .
We estimate the portion of T jRi that intersects Un by O(n−1)/O(αi ).
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Checking condition Д′(un)

short returns

rθ Un

αi

rθ Un

Since αi ≥ 1√
n
we estimate, µ(T jRi ∩Un) = o( n−1

n−1/2µ(Ri )) and hence,∑
Ri

µ(Un ∩ T jRi ) ≤ Cn−1/2µ(Ri )µ(Un) ≤ Cn−5/4µ(Un).
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Checking condition Д′(un)

intermediate returns
Dealing with non-uniform expansion. Define a set of line segments
where a local unstable (stable) manifold is homogeneous (has uniform
expansion rates) if it does not intersect the line segments. (Chernov)
Dealing with singularities. Fragmentation of the phase space
into Un.

Define γn(x) = W u(x) ∩ Un and note that T jγn(x) consists of a
connected curve for j < C log n iterates.
If T i+jγn(x) intersects a singularity line then it breaks into a set of
connected components Vn.
We use one-step expansion to obtain bounds on the set of Vn which
are small and hence, may remain in Un for a long time.
This set is shown to decay quick enough to zero as n→∞.
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Coupled systems of uniformly expanding maps

Define the following coupled system of uniformly expanding maps T of the
interval,

F (xi ) = ((1− γ)Txi ,
γ

N

∑
j

Txj)

with observable of the form ϕ(p) = −log(||p⊥||) where the component of
p = (x1, x2, . . . , xN) orthogonal to the line
L = {(x1, x2, . . . , xN) : x1 = x2 = · · · = xN} is
p⊥ = (x1 − x̄ , x2 − x̄ , . . . , xN − x̄) where x̄ = 1

N

∑N
j=1 xj .

Remark
Here S is the line x1 = x2 = · · · = xN .
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Coupled systems of uniformly expanding maps

Geometric interpretation of the observable.

p = (x1, . . . , xN)
(t, . . . , t)

(0, . . . , 0)

L = (1, . . . , 1)

p⊥ = (t − x1, . . . , t − xn)

Figure: The distance is given by the magnitude of the vector p⊥.
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Previous work

Results for the existence of an EVL and the value of the extremal index
(EI) in the case of a two coupled system where the averaged term is
given by γ

N

∑
j 6=i Txj were obtained by Keller and Liverani (2009).

Results for the existence of an EVL and value of the EI in the case of
N coupled system using a transfer operator approach is provided by
Faranda, Ghoudi, Guiraud, and Vaienti (2018).
We extend results by Faranda et al. using a pure probabilistic
approach.
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Coupled systems of uniformly expanding maps

Theorem (C., Holland, Nicol)

Let F : TN → TN be a coupled system of N expanding maps. Suppose
ϕ(p) = − log(||p⊥||), then

lim
n→∞

µ(Mn ≤ un) = e−θτ

where θ = 1− 1
(1−γ)N−1

1
|DT (x)|N−1

∫
h(x)dx .
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Checking condition Д′(un)

x

y
x = y

An = O( 1
n )

For simplification, we will only look at the two coupled system

F (x , y) = ((1− γ)Tx ,
γ

2
(Tx + Ty), (1− γ)Ty ,

γ

2
(Tx + Ty)).

We define the set An = {ϕ > un, ϕ ◦ F < un}.
The invariant line x = y is uniformly repelling in all directions.
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Checking condition Д′(un)

x

y
x = y

An = O( 1
n )

We use coordinates v = x−y√
2

to measure the perpendicular distance to
the line.
For j = 1, . . . ,C1 log n this uniform repulsion ensures that
µ(An ∩ F jAn) = 0 until |F jx − F jy | = O(1).
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Checking condition Д′(un)

x

y
x = y

An = O( 1
n )

For any expanding map T = rx we have expansion of An by the map
F [C1 log n] given by at least C2r

[C1 log n] ∼ nα for some 0 < α < 1.
Thus, for C1 log n ≤ j ≤ C3 log n, µ(An ∩ F−jAn) ≤ 1

n1+α .
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Calculating the extremal index for coupling maps

Let v = x−y√
2

and u = x+y√
2
,

θ = lim
n→∞

θn = lim
n→∞

µ(An)

µ(Un)
.

But
µ(An)

µ(Un)

∼ lim
n→∞

[1−
∫ 1

n[Tv ]

0
h(u, v) du dv/

∫ 1
n

0
h(u, v) du dv ]

= 1− 1
(1− γ)

1
|DT |

∫
h(u)du,

since v → Tv .
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Numerically estimating the extremal index

Recall: Definition of the extremal index is the ratio of the number of
exceedances in a cluster to the total number of exceedances.

’Blocks estimator’: splits the data into fixed blocks of size kn and
defines a cluster by the number of exceedances inside a block.
’Runs estimator’: introduces a run length of qn so that any two
exceedances separated by a time gap of less than qn belong to the
same cluster.

Heavy dependence on choice of kn and qn. (Lucarini et. al (2014),
Extremes Book)

Consider the point process of exceedances as a Poisson process (under
certain regularity conditions).

Extremal index as the expected value of a Poisson process.
Süveges estimate essentially the log-likelihood estimate of the expected
value of the Poisson point process. (Süveges (2007))
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Numerical results on the extremal index for the Anosov
system
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Estimated extremal index for increasing samples of the Anosov system for (a) the
line L transverse to the stable and unstable directions and (b) the line L inline
with the stable direction (v aligns with v+) with periodic point of period 2.
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Numerical results on the extremal index for coupled
expanding maps
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Numerical results on the extremal index for coupled
expanding maps
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