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Dynamical system as a stochastic process

Definition

Given a dynamical system (T, X, 1) we define a stochastic process
Xn = o T"(x)

where ¢ : X — R is an observable representing some physical quantity
which can be measured and holds some regularity.

In modeling deterministic physical phenomenon, T is usually taken as
ergodic and measure-preserving and . a probability measure.
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Extreme values

Definition
Given a sequence of random variables Xi, ..., X,, we define the maxima of
the system by,

M, = max{Xi, ..., Xn}

@ In this setting we can investigate the statistical properties of (M,)
such as distributional and almost sure convergence limits.

@ These statistical properties depend on our choice of observable.

@ In extreme value literature, ¢ = f(d(x, p)) for x € X and some
distinguished point p € X where f is usually monotone decreasing
with sup, (x) = ¢(p).

o Let S the set where ¢(x) reaches its supremum. (S = {p} above)
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Extreme Value Law (EVL)

Definition
Let (un) be a sequence of constants defined by the requirement that
limp—00 Np(X1 > up) = 7 and X, ..., X, be i.i.d random variables then,

lim (M, < up) = e "

n—o0o

where 6 € [0, 1] is called the extremal index where % roughly measures the
clustering of exceedences of the maxima.
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Dependence Conditions

Definition (Leadbetter (mixing condition))

Condition D(up): Given the sequence X, ..., X, for any integers
it < ...<pand ji, ..., jk for which j; — j, > t, and any large n € N,

’Fil,...,ile,...,jk(Un) - Fi17--~7"p(un)":jh---,jk(un)| < O‘(”: t)

uniformly for every p, k € N, where Fj, ;. denotes the joint distribution
function of Xj,, ..., X;, and a(n, t;) — 0 as n — oo for t, = o(n).

Definition (Leadbetter (recurrence condition))

Condition D'(up): Given the sequence Xi, ..., X, there exists a sequence
kn such that kK — oo, lim,_o0 kna(n, t,) = 0 and k,t, = o(n) and,

[n/kn]
lim P(X1 > un, Xj > up) =0

n—o0 4
J=1

v
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EVL results for classical observables of the form ¢(x) = f(d(x, p)) for
some point p € X
e Under D(up) and D’(u,) an extreme value law exists for non-uniformly
expanding maps. (Nicol, Holland, Torok (2012))
@ For certain one-dimensional uniformly expanding maps, 6 = 1if p is
not periodic and 6 < 1 otherwise. (Ferguson, Pollicott (2012))
e Dynamical variations of D(uy,) ([(u,)) and D'(u,) (1 (un)) were
introduced. (Freitas, Freitas, Todd (2010))
@ 0 =1 a.e. x for Sinai Dispersing Billiards with non-periodic point p.
(Haydn, Freitas, Nicol (2014))
@ 0 < 1 for Sinai Dispersing Billiards with periodic point p. (C., Nicol,
Zhang (2018))
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@ In extreme value literature ¢ = — log d(x, p) is often used, however,
scaling can translate results for one observable to another provided S

remains unchanged.

@ If S does change, there are no known translation results.

@ As we have seen, even in the case when p changes (e.g. p periodic,
versus p non-periodic), extreme value results have been shown to
change.

Can we extend EVL results to observables with more physical relevance
where S is represented by a curve rather than a point?
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@ Results for certain Anosov diffeomorphisms for observables of the form,

e(x,y) =1~ |x —xml® — |y — ym|

and
o(x,y,z)=ax+ by +cz+d

using the geometry of the level sets ¢(x,y) > u, and the geometry of
the underlying attractor. (Holland, Vitolo, Rabassa, Sterk, and Broer
(2012))

@ Observables of the form ¢ = —log d(x, L) where L is a line were
investigated in the setting of two-coupled expanding maps (Keller and
Liverani (2009)) and N-coupled expanding maps (Faranda, Ghoudi,
Guiraud, and Vaienti (2018)).
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Some remarks

@ In order to establish an extreme value law (EVL) for the following
systems, we need to show conditions [I(u,) and I/(uy,) hold.

e Condition [I(up) is a somewhat standard decay of correlations
argument and will not be checked here.

@ The novelty of these (and many proofs) come from showing /T'(u,)
holds.

e JT'(up) looks at ensuring,

n"_)n;o Z w(Un N Tj(Un)) =0
J

where U, = {x : ¢(x) > up}
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Anosov System

Suppose that (T, X, 1) is an Anosov system. Further, consider the Arnold
Cat Map of T? induced by the matrix,

()

vt

@ This matrix has two eigenvalues [A| > 1 and |A_| < 1.
o Any v =avt + v and v(") = DT v = ) + BA".
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Theorem (C., Holland, Nicol)

Let (T, X, ) be an Anosov system, and consider the observable function
©(x) = —log(|x - v — c|) where x = (x1,x2) € R?, v = (v1, o) € R?,
cER. Then S :={x € R?: x-v =c}. We have the following:

1 Suppose that v # {vt ,v~}. Then

lim p(Mp, < up)=e". (1)

n—o0
2 Suppose that v =v™' or v =v~, and S contains no periodic points.
Then equation (1) applies.

3 Suppose that v = v orv = v, and S contains a periodic point p of
prime period q. Then,

lim (M, < u,) =e 7.

n—oo

where § =1 — ﬁ

v
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Checking condition JT'(uj): case 1.

The sets U, = {¢(x) > un} are defined by a rectangular box around the
line defined by S := {x € R?: x - v = c}.

case l. a #0and §#0

X-v==cC

o(3)

VI vt

TiU, N U,
AT\

I - 0(2 )3
U,

@ There are approximately M intersections of T/ U, into U,.
o We estimate ) _; wW(TiU, N U,) =0 - 221 = O(n—lz)

n n
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Checking condition [I'(u,): case 2. (non-periodic)

case 2. a. 3 =0 then v aligns with v*

@ Similar to case 1.

@ We will not cover case 2. b. v aligns with v—.
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Checking condition T'(u,): case 3. (periodic)

Let p be a periodic point in S of prime period g.
Al ={p>uppoT <up....,p0T9<u,}
Geometrically, A7 consists of two small outer parallel strips in U, of
width (1/n)(5%).

+
The proof of is the same as in the case of no periodic orbits where A7
plays the role of U,.

@ By definition,
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Sinai dispersing billiard model with finite horizon

Sinai Dispersing Billiard Animation
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Sinai dispersing billiard model with finite horizon

[llustration of the reduction to the billiard map for a single collision point.
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Theorem (C., Holland, Nicol)

Let T : X — X by a planar dispersing billiard map with finite time horizon.
Suppose p(r,0) =1 — |r — rg| where x = (r,0) gives p(x) =1 — dny(x, L).
Assume L is not in the stable or unstable cone. Then,

lim p(Mp < up) —e "

n—oo

With this choice of ¢ the set S is a line so that U, = {x : ¢(x) > u,}
forms a rectangle around S. The hyperbolic properties of the billiard map
make this similar to the Anosov case with two main difficulties:
non-uniform expansion and the presence of singularities in the space.

e Chaotic Billiards (Chernov, Markarian (2006))
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Checking condition J1'(uj,)

short returns

e Consider the set of all points on X which will not hit a singularity in
j = Clog n iterates.

@ Map these backward and look at their intersection with our line r = rg.

o All rectangles R; with side length «; < ﬁ are ignored since any
intersection with them decays quickly.

(Univ. of Queensland) June 21-23, 2021 18/33



Checking condition J1'(uj,)

short returns

Qi [

@ Any set inside
solving for j.

U, can intersect U, at most one time by AV/n =1 and

@ We estimate the portion of T/R; that intersects U, by O(n~1)/O(q;).
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Checking condition J1'(uj,)

short returns

aj )

e Since o > ﬁ we estimate, u(T/RiNU,) = o(n”_—;;zu(R,-)) and hence,

> u(Un N TIR) < Cn P p(Ri)i(Un) < Cn >4 u(Un).
R
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Checking condition J1'(uj,)

intermediate returns

@ Dealing with non-uniform expansion. Define a set of line segments
where a local unstable (stable) manifold is homogeneous (has uniform
expansion rates) if it does not intersect the line segments. (Chernov)

e Dealing with singularities. Fragmentation of the phase space
into U,.

o Define v,(x) = W¥(x) N U, and note that T/+,(x) consists of a
connected curve for j < Clog n iterates.

o If T"y,(x) intersects a singularity line then it breaks into a set of
connected components V.

o We use one-step expansion to obtain bounds on the set of V,, which
are small and hence, may remain in U, for a long time.

o This set is shown to decay quick enough to zero as n — oc.
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Coupled systems of uniformly expanding maps

Define the following coupled system of uniformly expanding maps T of the
interval,
F(x:) = ((1 =) Txi, — Z Tx;)

with observable of the form ¢(p) = —/og(HpH]) where the component of

p = (x1,%2,...,xn) orthogonal to the line
L—{(Xl,X2,... N) DXL =Xp ==Xy} IS
pt=(x1 — X, x — X,. xN—)?)Wherex—NZj 1 X-

Here S is the line x; = x = - - - = xp.
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Coupled systems of uniformly expanding maps

Geometric interpretation of the observable.

=(t—x1,...,t—xp)

pl
p:(xl,...,xN)\“‘}((t )

v
’

//I_:(l,...,l)
(0,...,0)

Figure: The distance is given by the magnitude of the vector p*.
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Previous work

@ Results for the existence of an EVL and the value of the extremal index
(El) in the case of a two coupled system where the averaged term is
given by 5 >°;; Tx; were obtained by Keller and Liverani (2009).

@ Results for the existence of an EVL and value of the El in the case of
N coupled system using a transfer operator approach is provided by
Faranda, Ghoudi, Guiraud, and Vaienti (2018).

@ We extend results by Faranda et al. using a pure probabilistic
approach.
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Coupled systems of uniformly expanding maps

Theorem (C., Holland, Nicol)

Let F: TN — TN be a coupled system of N expanding maps. Suppose
p(p) = —log(|[p™|]), then

lim u(M, < u,) =e 7

n—o0
— 1 1
where =1 — )" BT | h(x)dx.
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Checking condition J1'(uj,)

Y-

x
@ For simplification, we will only look at the two coupled system
Fx,y) = (1 =7)Tx, (TX+ 7y),(1=Ty. (TX+ Ty))-

o We define the set A, = {¢ > up, 00 F < up}.
@ The invariant line x = y is uniformly repelling in all directions.
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Checking condition J1'(uj,)

X—

@ We use coordinates v = sz to measure the perpendicular distance to
the line.

@ For j=1,..., Cylog n this uniform repulsion ensures that
w(An N FIA) =0 until |F/x — Fly| = O(1).
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Checking condition J1'(uj,)

@ For any expanding map T = rx we have expansion of A, by the map
FlClognl given by at least Corl€'o8n ~ n® for some 0 < o < 1.

@ Thus, for Gilogn < j < Gslogn, u(A,N F_jA,,) < nl%
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Calculating the extremal index for coupling maps

— Xy — Xty
Let v = 7 and u = N

9= lim 6, = lim (An)

n—o0 n—o0 u( Un)

But

1 1
~ lim[1— /"[TV] h(u,v) du dv//n h(u,v) du dv]
n—o0 0 0

1 1 /
—1——— | h(u)du,
a—yior ) "
since v — Tv.
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Numerically estimating the extremal index

Recall: Definition of the extremal index is the ratio of the number of
exceedances in a cluster to the total number of exceedances.

@ 'Blocks estimator’: splits the data into fixed blocks of size k, and
defines a cluster by the number of exceedances inside a block.
@ 'Runs estimator’: introduces a run length of g, so that any two

exceedances separated by a time gap of less than g, belong to the
same cluster.

o Heavy dependence on choice of k, and q,. (Lucarini et. al (2014),
Extremes Book)
o Consider the point process of exceedances as a Poisson process (under
certain regularity conditions).
o Extremal index as the expected value of a Poisson process.
e Siiveges estimate essentially the log-likelihood estimate of the expected
value of the Poisson point process. (Siiveges (2007))
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Numerical results on the extremal index for the Anosov

system

Estimated EI 6 for v = 0.50" + 0.25v™ Estimated EI 6 for v = v™

< 095 >

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 €000 7000 8000 9000 10000

(a) (b)

Estimated extremal index for increasing samples of the Anosov system for (a) the
line L transverse to the stable and unstable directions and (b) the line L inline
with the stable direction (v aligns with v*) with periodic point of period 2.
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Numerical results on the extremal index for coupled

expanding maps
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Numerical results on the extremal index for coupled

expanding maps

Extremal Index 6 as a function of v and NV
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