
Symmetry breaking yields chimeras in two small populations
of Kuramoto-type oscillators

Oleksandr Burylko1,2, Erik A. Martens3,4, and Christian Bick5,6

1Institute of Mathematics, NAS of Ukraine, Kyiv
2Potsdam Institute for Climate Impact Research, Germany

3Lund University, Sweden
4Technical University of Dresden, Germany

5Vrije Universiteit Amsterdam, the Netherlands
6University of Exeter, United Kingdom

University of Exeter, 23 June, 2022

O. Burylko, E.A. Martens, C. Bick Symmetry breaking yields chimeras in two populations of oscillators



Modular network: M populations of N oscillators

L =MN phase oscillators

M identical populations
N oscillators in each population

θ̇σ,k = ω+
Ks

MN

N∑
j=1

sin(θσ,j − θσ,k −αs)+
Kn

MN

∑
τ ̸=σ

N∑
j=1

sin(θτ,j − θσ,k −αn). (1)

θσ,k ∈ T – phase of the oscillator k ∈ {1, . . . , N} in population σ ∈ {1, . . . ,M}
ω – natural frequency

Ks – coupling strength within population
Kn – coupling strength between populations
αs ∈ T – phase shift within population
αn ∈ T – phase shift between populations

By rescaling time we can set Ks +Kn = 1 and introduce:

A := Ks −Kn

Ks = Kn (A = 0), αs = αn – Kuramoto-Sakaguchi model
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Two-modular network of four phase oscillators

dθ1,1

dt
= ω + gs(θ1,1 − θ1,2)/4 + [gn(θ1,1 − θ2,1) + gn(θ1,1 − θ2,2)]/4,

dθ1,2

dt
= ω + gs(θ1,2 − θ1,1)/4 + [gn(θ1,2 − θ2,1) + gn(θ1,2 − θ2,2)/4,

dθ2,1

dt
= ω + gs(θ2,1 − θ2,2)/4 + [gn(θ2,1 − θ1,1) + gn(θ2,1 − θ1,2)]/4,

dθ2,2

dt
= ω + gs(θ2,2 − θ2,1)/4 + [gn(θ2,2 − θ1,1) + gn(θ2,2 − θ1,2)]/4,

(2)

gs(ϕ) = −Ks sin(ϕ− αs), gn(ϕ) = −Kn sin(ϕ− αn), (3)

Ks, Kn, αs, αn – parameters (new parameter A := Ks −Kn)

Phase differences:

ψ1 = θ1,1 − θ1,2, ψ2 = θ1,2 − θ2,1, ψ3 = θ2,1 − θ2,2 (4)
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Invariant manifolds in 3D torus

Invariant manifolds in phase space of variables (ψ1, ψ2, ψ3) ∈ T3 for system (2), (3) of
four coupled oscillators. The system has six canonical invariant manifolds in
Kuramoto-Sakaguchi case: Ks = Kn = K (A = 0) and αs = αn = α. Four of the six
invariant planes and blue invariant lines disappear with permutational symmetry
breaking.
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Symmetries

Dihedral symmetry D4 for system in phase differences is given by actions:
rotation

γr : (ψ1, ψ2, ψ3) 7→ (−ψ3,−ψ1 − ψ2, ψ1),

and mirror (reflection)

γm : (ψ1, ψ2, ψ3) 7→ (ψ1, ψ2 + ψ3,−ψ3).

Parameter symmetries:

γ(αn) : (ψ2;αn) 7→ (ψ2 + π;αn + π),

γ(A,t) : (ψ2;A, t) 7→
{
(ψ2 + π; 1/A, t), A > 0

(ψ2 + π; 1/A,−t), A < 0

Critical cases:
1. Ks = Kn = K (A = 0), αa = αn = α – Kuramoto-Sakaguchi model

with permutational symmetry S4

2. Kn = 0 (A = 1) – two uncoupled populations
3. Ks = 0 (A = −1) – ring network (no couplings inside populations)
4. αs = αn = ±π/2 – conservative dynamics
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Phase configurations of different collective regimes
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Invariant manifolds in 3D torus

Schematic representation of invariant manifolds in variables (ψ1, ψ2, ψ3) ∈ T3 for
system (2), (3). (a) Kuramoto-Sakaguchi case; (b) Two uncoupled groups (Kn = 0);
(c) Invariant surface in conservative case; (d) Level lines of the first integral.
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Schematic phase portraits on the invariant cylinder (αs = αn = ±π/2)

Dynamics on cylinder L(C) is presented in variables (ψ2, ϕ), where ϕ ∈ T1 is an angle
that parametrizes the curve

H(·,π/2)(ψ1, ψ3) = sin
ψ1

2
sin

ψ3

2
= C, C ∈ [0, 1].

Critical cylinder size

C∗ =


2A

A+ 1
, A ∈ [0, 1],

2

A+ 1
, A ≥ 1,

Weak chimeras for C ∈ (0, C∗);
Heteroclinic web for C = C∗;
Frequency locked solutions for C ∈ (C∗, 1).
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Serpentine chimera in two-modular system (heteroclinic surface)

Schematic representation of "serpentine chimera" in variables (ψ1, ψ2, ψ3) ∈ T3.
(a) The structure of the boundary surface (grey) for neutral periodic chimera states
(phase unlocked along ψ2 periodic solutions in T3). (b) Projection into (ψ1, ψ3)
plane. (c) "Skin of the chimera-snake" – dynamics on the surface of boundary
chimera surface (the map from the surface to a plane).
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Divergence-free and gradient cases. The first integrals.

A := Ks −Kn : Ks +Kn = 1

Statement 1. In the case αs = αn = ±π/2 system (2) is divergence-free for any A.

Statement 2. In the case αs = αn = 0 system (2) is a gradient system for any A.

The first integrals:

H(·,π
2
) = sin

ψ1

2
sin

ψ3

2
, αs = αn = ±π/2, ∀A

H(1,·) = cot
ψ1

2
tan

ψ3

2
, A = 1, ∀αs, αn

H(1,0) = ψ1 + 2ψ2 + ψ3, A = −1, αs = αn = ±π/2 or A = 1, αs = αn = 0

H(−1,0) = cot
ψ1 + ψ3

4
tan

ψ1 − ψ3

4
, A = −1, αs = αn = 0 or αs = π/2, αn = 0, ∀A
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Conservative-dissipative dynamics (for αs = π/2, αn = 0, ∀A = Ks −Kn)

Schematic phase portraits on the cylindric surfaces H(−1,0) = C are shown for
variables (ψ2, ϕ) ∈ T2. (a)-(c) Bifurcation transition leads to the disappearance of the
conservative region (shaded in yellow) filled with periodic (chimera) trajectories.
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Flat chimeras (synchronization inside one cluster), ψ1 = 0 or ψ3 = 0

Phase portraits on the invariant surface ψ3 = 0 for (ψ2, ψ1) ∈ [0, 2π]2 show the
bifurcation behavior for increasing parameter αs ∈ [0, 2π] keeping
A = Ks −Kn = 0.7, αn = 0.44 fixed.
Notations: sink and stable limit cycle (blue), source and unstable limit cycle (red),
saddle (green), saddle-node (two-color), homo/heteroclinic cycle (magenta).
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Chaotic chimeras

(a), (b) Chaotic trajectory of the system (2), (3) for ψ1, ψ2, ψ3 ∈ [0, 2π]3, A = 0.7,
αn = 0.44, αs = 1.6415 and αs = 1.64166. (c), (d) Poincaré sections ψ2 = π for (a)
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Chaotic chimeras

Projections of periodic and chaotic chimeras into the plane (ψ1, ψ3) ∈ [0, 2π]2 for
fixed A = 0.7, αn = 0.44 and increasing αs ∈ [1.58, 1.64]. (a) self-symmetric
eight-shape stable limit cycles; (b) pairs of stable limit cycles (blue and cyan) that
emerge from eight-shaped ones; (c)-(f) limit cycles that emerge after a chain of the
period-doubling bifurcations; (g) eight symmetric chaotic attractors; (h) four
symmetric chaotic attractors that appear after a symmetry increasing bifurcations of
pairs of smaller chaotic chimers.
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Chaotic chimeras

The road to chaotic weak chimeras. (a) shows a bifurcation diagram obtained via
quasi-continuation for fixed A = 0.7 and αs = 0.44. Vertical lines delineate αs-values
for the trajectories shown on the previous slide.
(b) shows the maximal Lyapunov exponent for varying (αs, αn) calculated by
numerically integrating from a fixed initial condition for T = 10000 time units. The
dashed line indicates parameter values shown in (a)
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Minichimerapedia for networks of two populations of two phase oscillators

1. Limit cycle solutions on the invariant planes ψ1 = 0 or ψ3 = 0, referred to as flat
chimeras. The situation corresponds to phase synchronization of one of the
populations with local order parameter |Z1| = 1 (or |Z2| = 1) and
|Z2(t)| ∈ (0, 1) (or |Z1(t)| ∈ (0, 1)).

2. A one-parameter family of periodic orbits on the invariant plane for αs = ±π
2

and
αn = 0, αn = ±π

2
, αn = π.

3. A two-parameter family of neutrally stable periodic orbits (3D conservative
region).

4. The four 8-shaped symmetric limit cycles.

5. The eight limit cycles without symmetry.

6. The eight nonsymmetric chaotic attractors.

7. The four symmetric chaotic attractors

8. The surface of the heteroclinic orbits (serpantine chimera) that bound the
conservative family of the periodic orbits
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Conservative chimera states

Proposition. System (1) is divergence-free in the case of even coupling function
gs(ϕ) = gn(ϕ) = g(ϕ).

(b)

(a)

(c)

Example of a neutral chaotic weak chimera in the six oscillator system for M = 3,
N = 2 in the conservative case αs = αn = π

2
, A = 1

2
. (a) Time series of phase

difference between two oscillators of the first group. (b) and (c): Projections of
trajectories from T5 into phase planes of the phase differences.
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Summary

▶ Modular system (1) has dihedral symmetry DMN for any M and N instead of
full permutational symmetry SMN for global coupling.

▶ Symmetry breaking (Ks 6= Kn, αs 6= αn =⇒ SMN → DMN ) destroys clusters
(invariant manifolds) from different populations and does not destroy clusters
from the same population

▶ Bifurcations transition from global Kuramoto-Sakaguchi system to modular
oscillator network leads to emergence of weak chimera states

▶ System of four oscillators has many types of the weak chimera solutions:
periodic, chaotic, heteroclinic, two parameter family of neutral periodic solutions,
family (surface) of homo/heteroclinic orbits (serpentine chimera)

▶ Modular system (1) has a continuous set of neutral chimera solutions in the case
αs = αn = ±π/2. These solutions can be periodic, quasi-periodic or chaotic
(similar to ABC flows)

▶ System can have conservative-dissipative dynamics for even gs(ϕ) and odd gn(ϕ)
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