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Iterated Function Systems

A common way to generate fractals is through the use of iterated
function systems (IFS), which are just a collection of contractions
S1,...,Sm on some closed set D ⊂ Rn.

By contractions we mean that for each i
|Si (x)− Si (y)| ≤ Ci |x − y | for each x , y ∈ D, where 0 ≤ Ci < 1.
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Iterated Function Systems

Associated to each IFS is a unique invariant set called the
attractor.

Theorem (Hutchinson, 1986)

Let S1,...,Sm be an IFS. Then there exists a unique non-empty
compact set F satisfying

F =
m⋃
i=1

Si (F )

We call this set the attractor of the IFS.



Self-Similar Sets

If the contractions in our IFS are similarities, so that for each i
|Si (x)− Si (y)| = ri |x − y | for each x , y ∈ D, where 0 ≤ ri < 1,
then we call the corresponding attractor F a self-similar set.
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Sierpinski Triangle



Self-Affine Sets

If the contractions in our IFS are affine maps, so that for each i
Si (x) = Ai (x) + ti where Ai is a linear transformation on Rn and ti
is a vector in Rn, then we call the corresponding attractor F a
self-affine set.



Bedford-McMullen Carpets
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Box Dimension

We often study fractals using different notions of dimension. These
are quantities which typically return the “expected” value for
traditional Euclidean shapes (e.g. 1 for lines, 2 for squares etc.)
but may take non-integer values for more irregular constructions.
They help to quantify how “rough” the fractal is.

One example of such a dimension is box dimension, which has
been extensively studied.



Box Dimension



Box Dimension

Definition
Let F ⊆ Rn and let Nδ(F ) denote the number of δ-mesh cubes that
intersect F . We define the upper and lower box dimensions of F by

dimBF = limδ→0
logNδ(F )

− log δ

and

dimBF = limδ→0
logNδ(F )

− log δ

respectively.

If they coincide then we define their common value to be the box
dimension of F .



Hutchinson’s Formula

In “nice cases” the box dimension of a self-similar set is given by
the unique s satisfying

m∑
i=1

r si = 1.

For the middle third Cantor set r1 = r2 = 1/3, so this formula
gives the box dimension to be s = log 2/ log 3 ≈ 0.631.
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Hutchinson’s Formula

Note that this expression for s is a closed form expression, i.e. it
contains a finite number of standard operations (such as addition
and exponentiation) but does not involve limits, derivatives,
integrals etc.



Multifractals

What is a multifractal? You can think of a multifractal as being a
measure which is distributed in a highly irregular way.



Self-Similar Measures

Definition (Self-similar measure)

Suppose we have a self-similar set F given by the IFS {Si}i∈I , and
a probability vector {pi}i∈I with each pi ∈ (0, 1). Then there is a
unique probability measure µ satisfying

µ =
∑
i∈I

pi µ ◦ S−1
i

which we call the self-similar measure associated to {Si}i∈I and
{pi}i∈I .



Self-Similar Measures



Self-Similar Measures

Self-similar measures can also be thought of as being pushforward
Bernoulli measures.



Self-Affine Measures

Definition (Self-affine measure)

Suppose we have a self-affine set F given by the IFS {Si}i∈I , and
a probability vector {pi}i∈I with each pi ∈ (0, 1). Then there is a
unique probability measure µ satisfying

µ =
∑
i∈I

pi µ ◦ S−1
i

which we call the self-affine measure associated to {Si}i∈I and
{pi}i∈I .
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The Lq-Spectrum

Let µ be a probability measure, δ > 0 and write Dδ to denote the
set of closed cubes in a δ mesh on Rn centred at the origin with
positive measure. Write

Dq
δ (µ) =

∑
Q∈Dδ

µ(Q)q

where the sum is taken over those Q such that µ(Q) > 0.



The Lq-Spectrum

Definition
If µ is a Borel probability measure on Rn then for q ≥ 0 the upper
and lower Lq spectrum of µ are defined to be

τµ(q) = limδ→0
logDq

δ (µ)

− log δ

and

τµ(q) = limδ→0

logDq
δ (µ)

− log δ

respectively.

If they coincide then we define their common value to be the Lq

spectrum of µ.



The Lq-Spectrum

The Lq-spectrum has several useful properties.

Firstly, the box dimension of the set µ is supported on is given by
τµ(0).
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The Lq-Spectrum

Secondly, if τµ(q) is differentiable at q = 1 then −τ ′µ(1) gives the
Hausdorff dimension of the measure µ.

This is defined by

dimH µ = inf{dimH A : µ(A) = 1}.



The Lq-Spectrum

Finally, the Lq-spectrum can be used in some situations to
calculate the fine multifractal spectrum of µ.



Local Dimension

We define the local dimension of µ at x by

dimloc(x) := lim
r→0

log(µ(B(x , r)))

log r
.



The Lq-Spectrum

For α ≥ 0 we define

Fα = {x ∈ Rn : dimloc(x) = α} .

We then define the fine multifractal spectrum of µ to be the
function

fH(α) = dimH(Fα).



The Lq-Spectrum

For α ≥ 0 we define

Fα = {x ∈ Rn : dimloc(x) = α} .

We then define the fine multifractal spectrum of µ to be the
function

fH(α) = dimH(Fα).



The Lq-Spectrum

How can the Lq-spectrum help us understand the fine multifractal
spectrum?

Begin by defining the Legendre transform of τµ(q) by

f (α) = inf
q∈R

{τµ(q) + α(q)}.

Then we always have

fH(α) ≤ f (α).

In many “nice” cases equality holds in the above (i.e.
fH(α) = f (α)). If this happens we say that the multifractal
formalism holds.
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The Lq-Spectrum

If µ is a “nice” self-similar measure with contractions ri and
probabilities pi then the Lq-spectrum of µ is given by the function
β : R → R, where β is defined by

∑
i∈I

pqi r
β(q)
i = 1.



The Lq-Spectrum

Note that this expression for β(q) is a closed form expression, i.e.
it contains a finite number of standard operations (such as
addition and exponentiation) but does not involve limits,
derivatives, integrals etc.



Diagonal Systems

Definition (Diagonal System)

We say a self-affine IFS {Si}i∈I is a diagonal system if each map is
of the form Si (x , y) = Ti (x , y) + ti , where Ti can be written in
matrix form as

Ti (x , y) =

(
±ci 0
0 ±di

)(
x
y

)
with ci , di ∈ (0, 1) and ti ∈ R2 is a translation vector



Diagonal Systems

We shall study the Lq-spectrum of self-affine measures supported
on the attractors of diagonal systems.



Box-Like Self-Affine Sets



Rectangular Open Set Condition

We will assume that all of our sets satisfy the rectangular open set
condition.

Definition (Rectangular Open Set Condition)

We say an IFS acting on R2 satisfies the Rectangular Open Set
Condition (ROSC) if there exists a non-empty open rectangle
R = (a, b)× (c , d) ⊂ R2 such that {Si (R)}i∈I are pairwise disjoint
subsets of R.



Calculating the Lq-spectrum

In order to calculate the Lq-spectrum τµ(q) of self-affine measures
supported on diagonal systems, Fraser introduced what he termed
a q-modified singular value function.



Some Notation

Let I∗ =
⋃

k≥1 Ik denote the set of all finite sequences with
entries in I. For i = (i1, . . . , ik) ∈ I∗ let Si = Si1 ◦ Si2 ◦ · · · ◦ Sik
and let p(i) = pi1pi2 · · · pik .

Also write α1(i) ≥ α2(i) for the singular values of the linear part of
Si and write c(i) = ci1ci2 · · · cik and d(i) = di1di2 · · · dik .
In particular, for all i = (i1, . . . , ik) ∈ I∗, α1(i) = max{c(i), d(i)}
and α2(i) = min{c(i), d(i)}.
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Projections

We define the projection maps π1, π2 : R2 → R by π1(x , y) = x
and π2(x , y) = y .

For q ≥ 0 we define

τ1(q) = τπ1(µ)(q)

and

τ2(q) = τπ2(µ)(q).

(It may be shown that both of these Lq-spectra exist).
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The q-modified singular value function

Definition (Fraser)

For s ∈ R and q ≥ 0 we define the q-modified singular value
function ψs,q : I∗ → (0,∞) by

ψs,q(i) = p(i)q α1(i)
τi(q) α2(i)

s−τi(q)



A Pressure Function

We may now define a function P : R× [0,∞) → [0,∞) by

P(s, q) = lim
k→∞

∑
i∈Ik

ψs,q(i)

1/k

(the fact this limit exists follows from some technical results and
properties of sub- and super- multiplicative sequences).



The Function γ(q)

Lemma (Fraser)

For each q ≥ 0 there is a unique s ≥ 0 such that P(s, q) = 1.

We may therefore define a function γ : [0,∞) → R by
P(γ(q), q) = 1. The importance of this function is the following
theorem of Fraser.

Theorem (Fraser)

Let µ be a self-affine measure supported on a diagonal system
satisfying the ROSC and let q ≥ 0. Then

τµ(q) = γ(q).



The Function γ(q)

Lemma (Fraser)
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The Function γ(q)

You can think of γ(q) as an analogue of β(q), which we saw
earlier as the function which gives the Lq-spectrum of “nice”
self-similar measures.

∑
i∈I

pqi r
β(q)
i = 1.



Closed Form Expressions

Unfortunately we have no “nice” way to calculate γ(q). Ideally we
would like to be able to find a closed form expression for γ.
Fraser proved that this is possible, but only in certain cases.



The Functions γA and γB

We can define functions γA, γB : [0,∞) → R by

∑
i∈I

pqi c
τ1(q)
i d

γA(q)−τ1(q)
i = 1

and

∑
i∈I

pqi d
τ2(q)
i c

γB(q)−τ2(q)
i = 1.



A Closed Form Expression

There are two possibilities.

Theorem (Fraser)

Let q ≥ 0. If max{γA(q), γB(q)} ≤ τ1(q) + τ2(q), then

γ(q) = max{γA(q), γB(q)}.
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Theorem (Fraser)
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A Question

Question (Fraser)

If min{γA(q), γB(q)} ≥ τ1(q) + τ2(q) and neither∑
i∈I

pqi c
τ1(q)
i d

γA(q)−τ1(q)
i log(ci/di ) ≥ 0

nor ∑
i∈I

pqi d
τ2(q)
i c

γB(q)−τ2(q)
i log(di/ci ) ≥ 0

are satisfied, is it still true that

γ(q) = min{γA(q), γB(q)}?



A Family of Counterexamples

Theorem (Fraser, L, Morris, Yu)

Let c , d be such that c > d > 0 and c + d ≤ 1. Let µ be the
self-affine measure defined by the probability vector (1/2, 1/2) and
the diagonal system consisting of the two maps, S1 and S2, where

S1(x , y) =

(
c 0
0 d

)(
x
y

)
and S2(x , y) =

(
d 0
0 c

)(
x
y

)
+

(
1− d
1− c

)
.

Then, for q > 1,

γ(q) < min{γA(q), γB(q)}.



Split Binomial Sums

A key lemma concerns the binomial expansion of (1 + x)k .

Lemma (Fraser, L, Morris, Yu)

Let x > 1, then

lim
k→∞

(∑k
i=⌈k/2⌉

(k
i

)
x i∑⌊k/2⌋

i=0

(k
i

)
x i

) 1
k

=
1 + x

2
√
x
> 1

where the limit is taken along odd integers k.
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The Proof (Sketch)

Due to the relative simplicity of the maps S1, S2 it is
straightforward to show that τ1(q) = τ2(q) = γA(q) = γB(q). We
shall denote this common value by s.



The Proof (Sketch)

We may write

P(s, q) = lim
k→∞

∑
i∈Ik

ψs,q(i)

1/k

= lim
k→∞

(
X q
k + Y q

k

)1/k
,

where

X q
k =

⌊k/2⌋∑
i=0

(
k

i

)
2−kq

(
ck−id i

)s
and

Y q
k =

k∑
i=⌈k/2⌉

(
k

i

)
2−kq

(
dk−ic i

)s
.



The Proof (Sketch)

By the binomial theorem and the definition of s = γA(q),

k∑
i=0

(
k

i

)
2−kq

(
ck−id i

)s
=
(
2−qcγA(q) + 2−qdγA(q)

)k
= 1k = 1.

It can then be shown that

X q
k

1− X q
k

=

∑⌊k/2⌋
i=0

(k
i

)
((d/c)s)i∑k

i=⌈k/2⌉
(k
i

)
((d/c)s)i

.
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The Proof (Sketch)

By our binomial result,(
X q
k

1− X q
k

)1/k

→ 2(d/c)s/2

(d/c)s + 1
=: δ ∈ (0, 1)

as k → ∞.



The Proof (Sketch)

This implies that
(
X q
k

)1/k → δ as k → ∞, and by similar

reasoning we can also deduce that
(
Y q
k

)1/k → δ as k → ∞.



The Proof (Sketch)

Therefore,

P(s, q) = lim
k→∞

(
X q
k + Y q

k

)1/k
= δ < 1

and by definition of P(t, q) and γ(q)

P(γ(q), q) = 1 > δ = P(s, q).

Since P(t, q) is decreasing in t this implies
γ(q) < s = γA(q) = γB(q), so γ(q) < min{γA(q), γB(q)}.
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Phase Transitions

Theorem (Fraser, L, Morris, Yu)

There exists a planar self-affine measure µ defined by an IFS
satisfying the rectangular open set condition (ROSC) such that τµ,
the Lq-spectrum of µ, is differentiable at q = 1 but not analytic in
any neighbourhood of q = 1.



New Closed Form Lower Bounds

Theorem (Fraser, L, Morris, Yu)

Let µ be a self-affine measure generated by a diagonal system and
let q ≥ 0. Then

γ(q) ≥ max{LA(q), LB(q)}

where LA(q) = γA(q)−((
γA(q)− τ1(q)− τ2(q)

)∑
i∈I p

q
i c

τ1(q)
i d

γA(q)−τ1(q)
i log(ci/di )∑

i∈I p
q
i c

τ1(q)
i d

γA(q)−τ1(q)
i log(ci )

)+

and LB(q) = γB(q)−((
γB(q)− τ1(q)− τ2(q)

)∑
i∈I p

q
i d

τ2(q)
i c

γB(q)−τ2(q)
i log(di/ci )∑

i∈I p
q
i d

τ2(q)
i c

γB(q)−τ2(q)
i log(di )

)+

.



Thank You For Listening!


