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Abstract

In a fairly common “proof” of the Ergodic Decomposition Theorem, for a random variable
whose law is preserved under a dynamical system, it is incorrectly assumed that the conditional
probability distribution, conditioned on observability of every strictly invariant set’s including
or not including the value of the random variable, must almost surely agree on the sigma-
algebra of strictly invariant sets with the Dirac mass at the true value of the random variable.
Although this seemingly natural assumption turns out to be false, the Ergodic Decomposition
Theorem nonetheless guarantees the weaker – seemingly unnatural – property that the sigma-
algebra of strictly invariant sets must almost surely have a 0-1 law under this conditional
probability distribution, even when this 0-1 law disagrees with the Dirac mass at the true
value of the random variable. This naturally prompts the question of whether – in greater
generality beyond the specific setting of the Ergodic Decomposition Theorem – the property
of a sub-sigma-algebra becoming probabilistically trivial under conditioning with respect to
itself (without reference to whether this triviality agrees with the Dirac mass at the true
sample point) is a “more natural” property than one might first expect. I will present a
result in this direction.

Part 1 (p1): Defining ‘posterior’/‘conditional’ probability of an event.
→ Appendix (p5): Proofs of results in Part 1.

Part 2 (p11): Defining ‘posterior’/‘conditional’ probability distributions; statement and
faulty proof of the Ergodic Decomposition Theorem.

Part 3 (p13): The error in the proof; defining self-conditional triviality; my result.

Part 1 (Thursday 2nd February 2023)

Setup

� Let X be some (generally, continuous) state space that is “not too horrible” [more precisely:
a separable metric space that is a Borel subset of its completion; any space that you might
ever want to consider in any practical application will fulfil this].

� Someone picks a point x ∈ X at random, with probability distribution P.

� I cannot see exactly the chosen point x, but I have some “limited observability” of it
(which will be defined precisely shortly).

� There is some region of the state space – i.e. a set B ⊂ X – that is of interest: I am
interested in whether the randomly selected point x is in this set B.

� Question: What is the posterior probability that x ∈ B given my limited observability?
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Standing Assumption. All subsets of X that we mention or consider are “Borel sets”.

→ heuristically: they are “not too horrible”; any subset of the state space that you might
ever want to consider in practice will fulfil this.

By way of notation: the probability that the randomly selected point lies in a pre-specified set
A ⊂ X is denoted P(A). (Hence in particular, the “prior probability that x ∈ B” is P(B).)
Furthermore, for any A ⊂ X with P(A) > 0 (meaning that the probability that x ∈ A is not
infinitesimal), the “probability that x ∈ B conditional on the observation that x ∈ A” is denoted

P(B|A) =
P(A ∩B)

P(A)
.

“Limited observability”: this is represented by a collection C of subsets of X (which we shall
call “test sets”) where for each member C ∈ C, I can “observe” or “test” whether or not x ∈ C.

The case that C is finite

Let us answer the Question in the case that the collection of available test sets is finite,
C = {C1, . . . , Cn}. We will represent the answer as a function whose input is the
invisible true value of x and whose corresponding output is the resulting posterior
probability that x ∈ B given observability of C. This function will be denoted P(B|C).

First, we take the partition of X generated by C; this is

PartX(C) :=

{
n⋂
i=1

χCi(ai) : (ai)i=1,...,n ∈ {0, 1}n
}
\ {∅}

where we use the notation

χC(a) :=

{
C a = 1

X \ C a = 0.

(The reason for the “\{∅}” at the end is that it is redundant to include the empty set as a
member of a partition.)

As an illustrative example (think of the stereotypical “Venn diagram”): Imagine X is a solid
rectangle, and C has three members C1, C2, C3 ⊂ X, which are mutually overlapping discs. If you
draw the rectangle and the three overlapping circles, then this pictorially divides the inside of
the rectangle into 8 distinct regions; these 8 regions are the members of the partition PartX(C).

Definition. Define the set XP, C ⊂ X by

XP, C :=
⋃
{A ∈ PartX(C) : P(A) > 0},

that is, XP, C is the union of all members of PartX(C) that have a larger-than-infinitesimal
probability of including the randomly selected point; and define the function

P(B|C) : XP, C → [0, 1]

such that for every A ∈ PartX(C) with P(A) > 0,

∀x ∈ A, P(B|C)(x) = P(B|A).
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Let us comment on the domain of definition of P(B|C). If PartX(C) includes some sets that
are infinitely unlikely for the randomly selected point to land in [e.g. if X is a two-dimensional
space with P a continuous distribution, and there are elements of C that overlap with each other
exactly on some one-dimensional curve], then P(B|C) is not well-defined at the points that lie in
these sets. But, from a practical point of view, this is not a problem, as the likelihood of landing
in such a set, i.e. of lying outside the domain of definition of P(B|C), is infinitesimal.

“Trivial Proposition” 1. In the above setting where C is finite, if B ∈ C then

P(B|C)(x) =

{
1 x ∈ B
0 x 6∈ B

= 1B(x)

for all x ∈ XP, C.

This “Trivial Proposition” serves as a sanity check : if B itself is among the sets for which we
can observe whether the randomly selected point lies in the set, then the “posterior probability”
that the randomly selected point lies in B should no longer be a matter of “probability” at all
but of direct deterministic verification.

What if there are infinitely many test sets?

−Example: suppose that

� X is a square, X = [0, 1)× [0, 1);

� writing x = (x1, x2), we have no observability of the vertical component x2 of the randomly
selected point x, but we can observe the horizontal component x1;

→ we have measuring tools that can measure x1 to arbitrarily high accuracy.

� One way that we can imagine this is as being that the collection of test sets is

C = {[ i2n ,
i+1
2n )× [0, 1) : n ≥ 1, 0 ≤ i < 2n}.

In such a scenario, namely where C has infinitely many members, can we meaningfully define
“the posterior probability that x ∈ B given the observability of C”?

The answer is, essentially, yes. There are a couple of standard constructions of this, which are
equivalent to each other. However, I find these constructions not very intuitive in terms of
relating to a physical picture of what is going on. So I have spent some time recently thinking
about how to come up with a construction with clearer physical intuition, and the result is what
I will now present.

Let L(P, [0, 1]) be “the set of all Borel-measurable functions f : X → [0, 1] identified up to
P-almost-sure equality”. Let us clarify a couple of things in this sentence:

� Heuristically, “Borel-measurable” means “not too horrible”; any function on a state space
X that you might ever want to consider in practice will fulfil this.
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� “identified up to P-almost-sure equality”: Suppose we have two Borel-measurable functions
f1 : X → [0, 1] and f2 : X → [0, 1]; and suppose that

P({y ∈ X : f1(y) 6= f2(y)}) = 0,

i.e. it is infinitely unlikely that the randomly selected point x will have f1(x) and f2(x)
disagreeing with each other. Then, for all practical intents and purposes, we may regard
f1 and f2 as being the same function. So then, L(P, [0, 1]) is defined such that f1 and f2
represent the same element of L(P, [0, 1]).

Now we will need to equip L(P, [0, 1]) with a topology, i.e. a way of defining what it means for
two functions from X to [0, 1] to be “very close to each other”. The way we will do this is as
follows: two elements f1, f2 ∈ L(P, [0, 1]) are considered to be “very close to each other” if the
following equivalent statements hold:

� for x ∼ P, Prob(|f1(x)− f2(x)| is very small) is very close to 1;

� for x ∼ P, Exp[|f1(x)− f2(x)|p]︸ ︷︷ ︸
=: E[|f1−f2|p]

is very small (with any fixed p ∈ [1,∞)).

The former, more precisely, corresponds to the topology of convergence in probability, while the
latter corresponds to the topology of Lp-convergence; but here the two topologies are the same
as each other, due to the range [0, 1] being bounded.

Now we again want to define P(B|C) to be a function that inputs elements of X and outputs
corresponding probability values in the interval [0, 1]; but this time, it will only be defined up to
P-almost-sure equality, i.e. P(B|C) will be an element of the space L(P, [0, 1]).

Theorem. Given an infinite collection C of test sets (countably infinite or uncountable), there
exists an element of L(P, [0, 1]) that we will denote P(B|C), such that the following two statements
hold:

(1) one can find finite collections D ⊂ C for which P(B|D) is arbitrarily close to P(B|C);

→ more precisely : under the topology with which we have equipped L(P, [0, 1]), P(B|C)
belongs to the closure of the set of those elements of L(P, [0, 1]) that are represented
by functions of the form P(B|D) for a finite subcollection D of the collection C;

(2) for any two finite collections D1,D2 ⊂ C with D1 ⊂ D2, we have

E
[(

P(B|D2)− P(B|C)
)2]

≤ E
[(

P(B|D1)− P(B|C)
)2]

.

Heuristically: We imagine testing a finite number of our infinitely many available test sets.
Point (2) says that if we then test some further test sets from the available collection, our
resulting posterior probability function will get closer – in terms of mean square error – to the
element of L(P, [0, 1]) that we denote P(B|C). And Point (1) says that it is indeed possible to
get arbitrarily close to this element by testing finitely many available test sets.

It is intuitive – and not hard to prove – that there is only one element P(B|C) of L(P, [0, 1])
fulfilling the description in the above theorem.

By applying Trivial Proposition 1 to finite subcollections of C, one can obtain the following:
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“Trivial Proposition” 2. If B ∈ C then

P(B|C)(x) = 1B(x) P-a.s.(x).

(Here, “P-a.s.” stands for “P-almost surely”, meaning that, for any given representative function
from X to [0, 1] representing the element P(B|C) of L(P, [0, 1]), the set of points at which this
function disagrees with 1B is infinitely unlikely to be landed in by the randomly selected point.)

Relationship between our definition and the standard definition. The standard definition of
P(B|C) works with C being a “σ-algebra”; our definition of P(B|C), where C need not be a
σ-algebra, coincides with the standard definition P(B|σ(C)), where σ(C) denotes “the σ-algebra
generated by C”.

Appendix of Part 1: Proofs.

These proofs will assume knowledge of basic measure theory. Here, “measurable” means
“Borel-measurable” except where stated otherwise. The “probability distribution” P is a Borel
probability measure on X.

Proof of Trivial Proposition 1

Assume B ∈ C; then the definition of PartX(C) yields that for any A ∈ PartX(C), either A ⊂ B
or A ⊂ X \B. Now given any x ∈ XP, C , let A ∈ PartX(C) be such that x ∈ A. Then

P(B|C)(x) = P(B|A) =
P(A ∩B)

P(A)
=

{
1 = 1B(x) if A ⊂ B
0 = 1B(x) if A ⊂ X \B.

Proof of Theorem

We will prove the Theorem with the inequality in property (2) strengthened to the following
“Pythagorean” equality:

E
[(

P(B|D1)− P(B|D2)
)2]

+ E
[(

P(B|D2)− P(B|C)
)2]

= E
[(

P(B|D1)− P(B|C)
)2]

.

For a finite collection D of Borel subsets of X, write α(D) for the set of all unions of members
of PartX(D). Note that α(D) is an algebra of sets.

Lemma 1. For any D1 ⊂ D, PartX(D1) ⊂ α(D).

Proof. Since D1 ⊂ D ⊂ α(D) and α(D) is an algebra of sets, it follows immediately from the
definition of PartX(D1) that PartX(D1) ⊂ α(D).

Now for a finite collection D of Borel subsets of X, for any bounded measurable f : X̃ → R
where P(X̃) = 1, define E[f |D] : XP,D → R such that for each x ∈ XP,D,

x ∈ A ∈ PartX(D) =⇒ E[f |D](x) =
1

P(A)

∫
A
f dP.

Note that P(B|D) = E[1B|D], since

1

P(A)

∫
A
1B dP =

P(A ∩B)

P(A)

for any A with P(A) > 0.
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Lemma 2. We have the following properties:

(A) Given [a, b] ⊂ R, if the range of f is contained in [a, b] then so is the range of E[f |D].

(B) For any A ∈ α(D), ∫
A
E[f |D] dP =

∫
A
f dP.

(C) In particular, taking A = X in (B), we have E[E[f |D]] = E[f ].

(D) For bounded measurable f1, f2 : X → R,

E[f1 + f2|D] = E[f1|D] + E[f2|D].

(E) For a bounded measurable function c : X1 → R where XP,D ⊂ X1, if c is constant on
each A ∈ PartX(D) with P(A) > 0 then

E[c.f |D](x) = c(x)E[f |D](x) ∀x ∈ XP,D.

(F) For any D1 ⊂ D,
E[E[f |D] | D1] = E[f |D1].

Proof. (A) Since a ≤ f ≤ b, we have aP(A) ≤
∫
A f dP ≤ bP(A) (for any measurable A ⊂ X), so

the result is immediate. (B) Since PartX(D) has finitely many members and they are disjoint,
in order to show the desired equality for all A ∈ α(D), it is clearly sufficient just to show it for
A ∈ PartX(D) with P(A) > 0; in this case,∫

A
E[f |D] dP =

∫
A

(
1

P(A)

∫
A
f dP

)
dP = P(A) .

1

P(A)

∫
A
f dP =

∫
A
f dP.

(C) and (D) are immediate. (E) For each x ∈ XP,D,

x ∈ A ∈ PartX(D) =⇒ E[c.f |D](x) =
1

P(A)

∫
A
c.f dP =

1

P(A)

∫
A
c(x)f dP = c(x)E[f |D](x).

(F) For any A ∈ PartX(D1) with P(A) > 0, for any x ∈ A,

E[E[f |D] | D1](x) =
1

P(A)

∫
A
E[f |D] dP

=
1

P(A)

∫
A
f dP by (B) and Lemma 1

= E[f |D1](x).

Since X is a separable metric space, the Borel σ-algebra is countably generated, and so it is
known that for p ∈ [1,∞) the space Lp(P) of measurable functions f : X → R with E[|f |p] <∞,
identified up to P-almost sure equality, is a separable complete metric space under the distance
function dp(f1, f2) := E[|f1 − f2|p]1/p. In our notation, we will not generally distinguish between
an exactly-defined function f and the element of Lp(P) that it represents. Now L(P, [0, 1]) is a
closed subset of Lp(P), and so L(P, [0, 1]) is a separable complete metric space under dp. For
any measurable A1, A2 ⊂ X, we define

A14A2 = {x ∈ X : 1A1(x) 6= 1A2(x)} = (A1 \A2) ∪ (A2 \A1).

Note that dp(1A1 ,1A2) = P(A14A2)
1
p . For p = 2, we equip L2(P) with an inner product, namely

〈f, g〉L2 = E[fg]; the metric d2 is precisely the metric induced by this inner product.
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Lemma 3. Given three finite collections D1 ⊂ D2 ⊂ D3 and a measurable B ⊂ X, we have that
P(B|D1)− P(B|D2) and P(B|D2)− P(B|D3) are L2-orthogonal to each other.

Proof. Two functions f and g with E[fg|D2] = 0 will have E[fg] = 0 by Lemma 2(C), i.e. they
will be orthogonal to each other. Now

E
[(

P(B|D1)− P(B|D2)
)(

P(B|D2)− P(B|D3)
)∣∣∣D2

]
=
(
P(B|D1)− P(B|D2)

)
E
[
P(B|D2)− P(B|D3)

∣∣∣D2

]
by Lemma 2(E)

=
(
P(B|D1)− P(B|D2)

)(
P(B|D2)− E[P(B|D3)|D2]

)
by Lemma 2(D,E)

=
(
P(B|D1)− P(B|D2)

)(
P(B|D2)− P(B|D2)

)
by Lemma 2(F)

= 0.

Lemma 4. Given a finite collection D and a measurable C ⊂ X, for any measurable B ⊂ X we
have

d2

(
P(B|D) , P(B|D ∪ {C})

)
≤
√
5
2 min
E∈α(D)

P(C4E)
1
4 .

To prove this, we start with the following simple fact.

Lemma 5. In the setting of Lemma 4, let us write η := minE∈α(D) P(C4E), and for each
A ∈ PartX(D) define φ(A) ⊂ A by

φ(A) :=

{
A ∩ C if P(A ∩ C) ≤ 1

2P(A)

A \ C if P(A ∩ C) > 1
2P(A).

Then

η = P

 ⋃
A∈PartX(D)

φ(A)

 =
∑

A∈PartX(D)

P(φ(A)).

Proof. The elements E of α(D) can be identified precisely by specifying whether each member
A of the partition PartX(D) is a subset of E or a subset of X \E, and this is in turn equivalent
to specifying whether the part of C4E contained in A is A \C or A∩C; and φ(A) is defined to
be either A \ C or A ∩ C in such a way that if A ∩ C and A \ C have different measure then
φ(A) is the one with the smaller measure.

Proof of Lemma 4. We continue with the notations introduced in Lemma 5. Let

A := {A ∈ PartX(D) : P(φ(A)) >
√
η P(A)},

and let Ac := PartX(D) \ A. By Lemma 5,∑
A∈A

P(φ(A)) ≤ η.

If η = 0 then it follows that P(φ(A)) = 0 for all A ∈ A and hence (by virtue of the definition of A)
that A = ∅; and if η > 0 then, again using the definition of A, it follows that

∑
A∈A
√
η P(A) ≤ η,

and we can divide both sides by
√
η; so in either case, it follows that∑

A∈A
P(A) ≤ √η.

Now for each A ∈ PartX(D):
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� if A ⊂ C or A ⊂ X \ C then A is a member of PartX(D ∪ {C});

� if A intersects both C and X \ C then A is the union of two members of PartX(D ∪ {C}),
namely A ∩ C and A \ C; and furthermore, if 0 < P(A ∩ C) < 1 then

P(B|A) = P(C|A)P(B|A ∩ C) +
(
1− P(C|A)

)
P(B|A \ C). (1)

Consequently, writing

v(A) :=

∫
A

(P(B|D ∪ {C})− P(B|D))2 dP

=

∫
A∩C

(P(B|D ∪ {C})− P(B|D))2 dP +

∫
A\C

(P(B|D ∪ {C})− P(B|D))2 dP,

we have that

� if 0 < P(A ∩ C) < 1 then

v(A) = P(A ∩ C)
(
P(B|A ∩ C)− P(B|A)

)2
+ P(A \ C)

(
P(B|A \ C)− P(B|A)

)2
= P(A)

[
P(C|A)

(
P(B|A ∩ C)− P(B|A)

)2
+
(
1− P(C|A)

)(
P(B|A \ C)− P(B|A)

)2]
= P(A)

(
P(B|A ∩ C)− P(B|A \ C)

)2
P(C|A)

(
1− P(C|A)

)
using (1);

� if P(A ∩ C) is 0 or 1, then v(A) = 0.

In the former case, we have that v(A) ≤ 1
4P(A) (since the maximum value of λ 7→ λ(1− λ) on

[0, 1] is 1
4), and that if A ∈ Ac then

v(A) ≤ P(A) min(P(C|A) , 1− P(C|A) ) = P(φ(A)) ≤ √η P(A).

Hence

d2

(
P(B|D) , P(B|D ∪ {C})

)2
=

∑
A∈PartX(D)

v(A)

≤

(∑
A∈A

1
4P(A)

)
+

(∑
A∈Ac

√
η P(A)

)
≤ 1

4

√
η +
√
η

= 5
4

√
η.

As an immediate corollary of Lemma 4, we have the following.

Corollary 6. For all ε > 0 and n ∈ N there exists δ(ε, n) > 0 such that for any measurable
B ⊂ X and finite collections D,D′ with |D′| = n, if

max
C∈D′

min
E∈α(D)

P(C4E) ≤ δ

then
d2

(
P(B|D) , P(B|D ∪ D′)

)
≤ ε.
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We now prove the Theorem. Since L(P, [0, 1]) is separable, we can find a countable subset {Cn}n≥1
of C that is dense in C (i.e. for every C ∈ C, infn≥1 P(Cn4C) = 0). Let D̃n = {C1, . . . , Cn} for
each n. Then by Lemma 3, for all n ≥ m ≥ 1 we have

d2

(
P(B|D̃1) , P(B|D̃n)

)2
= d2

(
P(B|D̃1) , P(B|D̃m)

)2
+ d2

(
P(B|D̃m) , P(B|D̃n)

)2
.

Since L(P, [0, 1]) is d2-bounded, it follows that the sequence
(
P(B|D̃n)

)
n≥1 is d2-Cauchy. Since

L(P, [0, 1]) is d2-complete, this sequence converges to a limit that we denote P(B|C).1 Obviously
P(B|C) fulfils property (1) of the Theorem. Now take any finite D1 ⊂ D2 ⊂ C, and for all n ≥ 3
define Dn = D2 ∪ D̃n. Since D2 ⊂ C and {Cn}n≥1 is dense in C, applying Corollary 6 gives that

d2

(
P(B|Dn) , P(B|D̃n)

)
→ 0 as n→∞,

and hence
P(B|Dn)→ P(B|C) as n→∞.

Lemma 3 gives that

d2

(
P(B|D1) , P(B|Dn)

)2
= d2

(
P(B|D1) , P(B|D2)

)2
+ d2

(
P(B|D2) , P(B|Dn)

)2
for each n ≥ 2, and taking the limit as n→∞ gives the desired result.

Proof that P(B|C) is unique

Suppose we have distinct f1, f2 ∈ L(P, [0, 1]) both fulfilling the description of P(B|C) in the
Theorem. Letting ε := 1

2d2(f1, f2) > 0, we can find D,D′ ⊂ C such that

d2
(
P(B|D) , f1

)
< ε

d2
(
P(B|D′) , f2

)
< ε.

It then follows that

d2
(
P(B|D ∪ D′) , f1

)
< ε

d2
(
P(B|D ∪ D′) , f2

)
< ε,

and hence, by the triangle inequality, d2(f1, f2) < 2ε = d2(f1, f2), giving a contradiction.

Proof of Trivial Proposition 2

Assume B ∈ C. On the basis of property (1) in the Theorem, let (Dn) be a sequence of finite
subcollections of C such that P(B|Dn) converges to P(B|C) as n→∞. Due to property (2) in
the Theorem, for each n, we have that

d2
(
P(B|Dn ∪ {B}) , P(B|C)

)
≤ d2

(
P(B|Dn) , P(B|C)

)
,

and hence P(B|Dn ∪ {B}) converges to P(B|C) as n → ∞. But by Trivial Proposition 1,

P(B|Dn ∪ {B})
P-a.s.
= 1B; i.e., in L(P, [0, 1]) the sequence P(B|Dn ∪ {B}) is simply the constant

sequence 1B.

1It fact, it turns out (“Lévy’s Upward Theorem”) that we have not merely convergence in the topology of
L(P, [0, 1]) but P-almost-sure convergence.
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Proof that P(B|C) coincides with the classical definition of P(B|σ(C))

The classical definition of P(B|C) assumes that C is a σ-algebra (while B may be any Borel set),
and defines P(B|C) to be the unique element of L(P, [0, 1]) that admits a C-measurable version
and has

P(B ∩ C) =

∫
C
P(B|C) dP

for all C ∈ C.

From now on, we return to interpreting “P(B|C)” according to our definition, without assuming
that C is a σ-algebra. If C is a σ-algebra, then given any f ∈ L1(P) we will write E[f |C] ∈ L1(P)
for the classical interpretation of “E[f |C]”, i.e. E[f |C] has a C-measurable version and∫

C
f dP =

∫
C
E[f |C] dP

for all C ∈ C.
Lemma 7. P(B|C) = P(B|σ(C)).
Proof. Let (D̃n)n≥1 be as in the proof of the Theorem, and let E =

⋃∞
n=1 α(D̃n). Note that E is

an algebra of sets. Let Ē be the “closure” of E , i.e.

Ē =

{
measurable C ⊂ X : inf

E∈E
P(C4E) = 0

}
.

By definition of (D̃n)n≥1, we have that C ⊂ Ē . We next want to show that σ(C) ⊂ Ē , and so for
this it will be sufficient to show that Ē is a σ-algebra. Obviously ∅, X ∈ Ē . For any C ∈ Ē , if
(En) is a sequence in E such that P(C4En)→ 0, then (X \ En) is also a sequence in E and we
have

(X \ C)4(X \ En) = C4En;

so X \ C ∈ Ē . For any C1, C2 ∈ Ē and any ε > 0, if we take E1, E2 ∈ E with P(Ci4Ei) < ε
2 for

i = 1, 2, then since
(C1 ∪ C2)4(E1 ∪ E2) ⊂ (C14E1) ∪ (C24E2),

we have P((C1 ∪ C2)4(E1 ∪ E2)) < ε, and E1 ∪ E2 ∈ E ; so C1 ∪ C2 ∈ Ē . So Ē is an algebra.
For any increasing sequence (Cn)n≥1 in Ē , letting C∞ =

⋃∞
n=1Cn, we have that P(C∞4Cn) =

P(C∞ \ Cn)→ 0 as n→∞; but Ē is closed under limits of convergent sequences (in terms of
P( ·4 · ) tending to 0), and hence C∞ ∈ Ē . So the algebra Ē is indeed a σ-algebra. Thus, in
particular, σ(C) ⊂ Ē . So E is a countable subset of σ(C) that is “dense” in σ(C), and thus, as in
the proof of the Theorem, we have

P(B|α(D̃n))→ P(B|σ(C)) as n→∞.

But we also have that for each n, PartX(α(D̃n)) = PartX(D̃n), and so P(B|α(D̃n)) is equal to
P(B|D̃n), which converges to P(B|C) as n→∞.

Lemma 8. For all C ∈ C, P(B ∩ C) =
∫
C P(B|C) dP.

Proof. Fix C ∈ C, and let (D̃n)n≥1 be as in the proof of the Theorem. Let (C̃n)n≥1 be a sequence
with C̃n ∈ D̃n for each n, such that P(C̃n4C)→ 0 as n→∞. Lemma 2(B) gives that for each
n,

P(B ∩ C̃n) =

∫
C̃n

P(B|D̃n) dP.

Since P(B|D̃n)→ P(B|C) and 1C̃n
→ 1C as n→∞, it is not hard to show that we can obtain

the desired result by taking the limit as n→∞ in the above equality.
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In view of Lemmas 7 and 8, it remains only to justify that P(B|C) has a σ(C)-measurable
version. Since convergence in probability implies almost-sure convergence of a subsequence, we
can find a sequence (Dn) of finite subcollections of C such that P(B|Dn) converges P-almost
surely to P(B|C) as n→∞. Since P(B|Dn) is constant on each member of PartX(Dn), we have
in particular that P(B|Dn) is σ(C)-measurable. Hence there is a Borel-measurable set X0 ⊂ X
with P(X0) = 1 such that P(B|C)

∣∣
X0

is measurable with respect to the induced σ-algebra from

σ(C) on X0. Now let g be a σ(C)-measurable version of E
[
P(B|C)

∣∣σ(C)
]
. Then for all C ∈ σ(C),∫

C∩X0

g dP =

∫
C
g dP =

∫
C
P(B|C) dP =

∫
C∩X0

P(B|C) dP,

and so P(B|C) agrees with g P-almost everywhere in X0, and hence in X.

Part 2 (Thursday 9th February 2023)

(We continue with our Standing Assumption that all subsets of X that we mention are Borel sets.)

So far, we have imagined that there is a particular set B ⊂ X of interest, and asked about the
posterior probability that the randomly selected point x lies in B given observability of C.

Now let us suppose that there is not a pre-identified region of the state space X that is
of special interest: rather, we simply want to know

“what is the posterior probability distribution of the randomly selected
point x, given observability of C?”

such that someone could then ask me about any region B of the state space and, on the basis of
my posterior probability distribution for x, I would accordingly be able to tell them the posterior
probability that x is in B. (Note that, by definition, the “prior probability distribution of x” is
simply P.)

By way of notation: for any A ⊂ X with P(A) > 0, the “probability distribution of x conditional
on the observation that x ∈ A” is denoted PA; to be precise, this is defined such that for each
B ⊂ X,

PA(B) = P(B|A) =
P(A ∩B)

P(A)
.

Now once again, we want to represent the answer to the above question as a function PC , whose
inputs are elements of X and whose outputs are probability distributions defined over X, where
if we input the invisible true value of x, the corresponding output is the posterior probability
distribution of x given observability of C.

Definition. If C is finite, define

PC : XP, C → {probability distributions on X}

such that for every A ∈ PartX(C) with P(A) > 0,

∀x ∈ A, PC = PA.

In other words: ∀x ∈ XP, C , for any B ⊂ X,

PC(x)
(
B
)

= P(B|C)(x). (2)
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We now consider the case that C is infinite. Recall that in this case, we defined in Part 1 an
element P(B|C) of the space L(P, [0, 1]) of functions X → [0, 1] identified up to P-almost sure
equality.

Theorem.2 Given an infinite collection C, there exists—unique up to P-almost sure equality—a
function

PC : X → {probability distributions on X}

with the property that for each B ⊂ X, the map x 7→ PC(x)
(
B
)

is a version of P(B|C)

→ i.e. with the property that for each B ⊂ X, Eq. (2) P-almost surely holds.

The “unique up to P-almost sure equality” means that if we have two functions P1 and P2

fulfilling the description in this theorem, then it is infinitely unlikely that the randomly selected
point x will be such that P1(x) and P2(x) are distinct probability distributions.

Ergodic Decomposition Theorem

Let T : X → X be a Borel-measurable map. (Again, this means that T is “not too horrible”;
any self-map of X that you might ever want to consider in practice will fulfil this.)

We will define “T -invariant probability distributions” and “T -invariant subsets of X”.

Definition. We say that a probability distribution P on X is T -invariant if for an X-valued
random variable R with probability distribution P, the random variable T (R) also has probability
distribution P.

Definition. We say that a set A ⊂ X is T -invariant if A is a Borel set and for all x ∈ X,

x ∈ A ⇔ T (x) ∈ A.

(Despite our Standing Assumption, it is worth very explicitly including the “Borel set” property as
part of the definition, as failing to have this would considerably affect the concept of “ergodicity”.)

Note that

� if A is T -invariant then so is X \A;

� if A1, A2 are T -invariant then so are A1 ∪A2 and A1 ∩A2.

T -invariant probability distributions and T -invariant sets are related by the following result that
is not hard to prove:

Proposition. If P is T -invariant and A ⊂ X is a T -invariant set with P(A) > 0, then PA is
T -invariant.

Now if P is T -invariant and C is a finite collection of T -invariant sets, then the “law of total
probability” gives

P(·) =
∑

A∈PartX(C),
P(A)>0

P(A)PA(·), (3)

2This is a well-known result (Theorem 33.3 of P. Billingsley, Probability and Measure, 3rd Edition, 1995); it is
a case of the disintegration theorem.
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where in the summand, P(A) is a scalar coefficient, while by the above Proposition, PA(·) is a
T -invariant probability distribution. Thus, (3) serves as a “decomposition of the T -invariant
probability distribution P into T -invariant components”.

Now the “sum” in (3) could have only one term in it. Specifically, this happens if and only if
every C ∈ C has either P(C) = 0 or P(C) = 1. In this case, we say that the decomposition (3) is
a “trivial decomposition”.

Definition. We say that a T -invariant probability distribution P is T -ergodic if “it does not
admit a non-trivial decomposition of the form (3)”, i.e. if every T -invariant set C ⊂ X has
P(C) = 0 or P(C) = 1.

Now let us point out that in general, for a T -invariant probability distribution P and a finite
collection C of T -invariant sets, the “invariant components” PA in the decomposition (3) need
not be T -ergodic, i.e. they may themselves be “further decomposable” using a “finer” collection
C′ ⊃ C of T -invariant sets. This naturally leads to the following question: what about if, instead
of taking a finite collection of T -invariant sets, we choose C to be the entire collection of all
T -invariant sets.

Theorem (Ergodic Decomposition Theorem). Let C be the set of all T -invariant sets. If P is
T -invariant, then for P-almost every x ∈ X, PC(x) is T -ergodic.

The “P-almost every” is included simply because PC was only defined uniquely up to P-almost-
sure equality; it would be possible to choose a version of PC such that PC(x) is T -ergodic for
every x ∈ X.

Now the proof of the Ergodic Decomposition Theorem has two parts:

1O [the “relatively easy” part] Show that PC(x) is T -invariant for P-almost all x.

2O [the harder part] Given 1O, show that PC(x) is T -ergodic for P-almost all x.

Part 2O is, as we have just indicated, the harder part – except that in some references it appears
to be very easy:

“by Trivial Proposition 2, for P-almost every x we have

∀B ∈ C, PC(x)
(
B
)

= 1B(x)

and so PC(x) assigns 0 or 1 to every T -invariant set B.”

But there is an error in this “proof”; contained within the quotation marks is a wrong statement
for which it is possible to find counterexamples.

Part 3 (Thursday 16th February 2023)

In fact, not only is it possible to find counterexamples, but the situation in which what is
contained within the quotation marks is correct is quite degenerate:

Exercise. Suppose T is invertible. Show that if the statements contained within the quotation
marks are correct, then P-almost every x ∈ X is a fixed or periodic point of T .
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(The condition that T is invertible is not actually needed; and also, regardless of whether T is
invertible, the “if” can be strengthened to “if and only if”. But all this is somewhat harder to
show, while the Exercise as written above is not very difficult.)

The flaw in the “proof” is that it is only for each individual B ∈ C that we can say that
for P-almost every x, PC(x)

(
B
)

= 1B(x); the collection C can be infinite – indeed, it can
easily be a “continuum” of sets. Given a continuum for each member of which some statement
holds P-almost surely, we cannot necessarily conclude that P-almost surely, all members of the
continuum satisfy the statement.

Let us now formulate the issue is general terms outside the specific setting of the Ergodic
Decomposition Theorem.

Generalising beyond the dynamics setting

Returning to the general setting of a probability distribution P on X and a collection C of subsets
of X:

Definition. We say that C is regular with respect to P if P-almost every x ∈ X has that for all
B ∈ C, PC(x)

(
B
)

= 1B(x).

By Trivial Proposition 2, if C is finite (or countably infinite) then it is regular with respect to P.

Definition. We say that C is self-conditionally trivial with respect to P if P-almost every x ∈ X
has that for all B ∈ C, PC(x)

(
B
)
∈ {0, 1}.

So, once we are given Part 1O of the proof of the Ergodic Decomposition Theorem, the Ergodic
Decomposition Theorem then says precisely that the set of all T -invariant sets is self-conditionally
trivial with respect to the T -invariant probability distribution P.

Obviously, if C is regular then it is self-conditionally trivial, but the converse does not hold. The
above “proof” of the Ergodic Decomposition Theorem falsely assumes that any collection C is
automatically regular. Let us now give an example of a situation in which regularity fails: Take
X = [0, 1], with P the uniform distribution, and C = {{x} : x ∈ [0, 1]}. For any finite D ⊂ C,
writing D = {{x1}, . . . , {xn}}, we have that PartX(D) = D ∪ {[0, 1] \ {x1, . . . , xn}}, and hence
in particular, XP, C = [0, 1] \ {x1, . . . , xn}. So for each B ⊂ X, we have

P(B|D) : [0, 1] \ {x1, . . . , xn} → [0, 1]

P(B|D)(x) =
P(B \ {x1, . . . , xn})

P([0, 1] \ {x1, . . . , xn})
=

P(B)

1
= P(B).

It follows that P(B|C)(x)
P-a.s.(x)

= P(B). As this holds for every B, we see from the definition of

PC that PC(x)
P-a.s.(x)

= P. Now for P-almost every x ∈ X, we have that {x} ∈ C and yet

PC(x)
(
{x}
)

= P
(
{x}
)

= 0 6= 1{x}(x).

So we have given an simple example showing that one cannot assume that any collection C is
regular. But nonetheless, as we have said, the Ergodic Decomposition Theorem still says that
the collection C consisting of all T -invariant sets is self-conditionally trivial.
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This is curious, as – at least at first sight – self-conditional triviality looks like a rather unnatural
condition to consider: one might naturally have felt hopeful that regularity would hold, but why
would one specifically feel hopeful for the scenario that if regularity fails, PC nonetheless still
almost surely assigns 0 or 1 to every member of C, even if the 0 or 1 assigned is contrary to the
result of deterministic verification of whether or not the input value belongs to each member of C?

This naturally leads to the question of whether there is some way of understanding the self-
conditional triviality property that makes it more “natural” than first appears. I will present a
result in this direction.

This notion of self-conditional triviality has been studied before (under different terminology
from my own here), particularly in papers by Patrizia Berti and Pietro Rigo3 where various
conditions, including necessary and sufficient conditions, for self-conditional triviality are given.

My result that I will present is a further necessary and sufficient condition for self-conditional
triviality.

My result

From now on, I will assume some knowledge of measure theory, but I will also give a crude
heuristic description of what I am presenting.

Write σ(C) for the σ-algebra generated by C; as a crude heuristic description: if C is a given
collection of available “test sets”, then σ(C) is the collection of all sets C ⊂ X for which one,
in effect, has access to the knowledge of whether a given point in X lies in C simply through
the availability of being able to test whether the point belongs to each member of C. (Since we
assume that C consists of Borel sets, σ(C) is a sub-σ-algebra of the Borel σ-algebra.)

The following is a well-known fact:4

Proposition. There is a version of PC such that for each B ⊂ X, the map

X → [0, 1]

x 7→ PC(x)
(
B
)

is σ(C)-measurable.

This “σ(C)-measurability” means that the set of points x for which PC(x)
(
B
)

lies in any given
subinterval of [0, 1] is a member of σ(C). A crude heuristic interpretation is that by being able to
test whether a given unknown value x is in each member of C, one has access to the knowledge
of what the probability distribution PC(x) is, despite not necessarily knowing the exact value of x.

Now if we refer to PC as a “posterior probability distribution from the prior P given C”,
then we can iterate this procedure by taking the resulting “posterior” as a new “prior”:

Definition. An iterated posterior probability distribution (IPPD) from P given C is a function

PC, C : X ×X → {probability distributions on X}

such that for P-almost every x ∈ X, the map y 7→ PC, C(x, y) is a version of
(
PC(x))C .

30–1 laws for regular conditional distributions, Annals of Probability 35, 2007; A Conditional 0–1 Law for the
Symmetric σ-field, Journal of Theoretical Probability 21, 2008.

4In fact, it comes directly from the proof of the theorem that defines PC .
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Since, without loss of generality (according to the above Proposition), PC can be defined such
that x 7→ PC(x)

(
B
)

is σ(C)-measurable for each B, it seems reasonably natural to hope that
one can find an IPPD PC, C such that (x, y) 7→ PC, C(x, y)

(
B
)

(as a map from X ×X to [0, 1]) is
(σ(C)⊗ σ(C))-measurable for each B; the crude heuristic meaning of this would be: Given an
unknown pair of points x and y in X,

� if I can test whether x is in each member of C,

→ which implies that I have access to the knowledge of what the probability distribution
PC(x) is (for a specified σ(C)-measurable version of PC),

� and I can also test whether y is in each member of C,

→ which, likewise, implies that for any specified probability distribution O on X (and
any specified σ(C)-measurable version of OC), I have access to the knowledge of what
the probability distribution OC(y) is,

then I have access to the knowledge of what the probability distribution PC, C(x, y) is.

Main Result (N., arXiv:1511.08864, 2017). C is self-conditionally trivial with respect to P
if and only if there exists an IPPD PC, C from P given C such that for each B ⊂ X, the map
(x, y) 7→ PC, C(x, y)

(
B
)

is (σ(C)⊗ σ(C))-measurable.
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