Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>

Kadir Has University

March 30, 2023

 Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, Özkan Karabacak:
 Kadir Has University

 Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < □ ▷ < 壹 ▷ < 毫 ▷ < 毫 ▷ < 毫 ▷ < 毫 ▷ < ₹</td>

Certification of Attractors

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D >

Certification of Global Attractors

Lyapunov, A. M. A general task about the stability of motion. Ph. D. Thesis, 1892.

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators <

Certification of Milnor Attractors

Rantzer, A. A dual to Lyapunov's stability theorem. 2001.

 Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, Özkan Karabacak:
 Kadir Has University

 Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < □ ▷ < 壹 ▷ < 毫 ▷ < 毫 ▷ < 毫 ▷ < 毫 ▷ < ₹</td>

Kuramoto Model

$$\dot{\theta}_i = \omega + \sum_{j=1}^N g(\theta_j - \theta_i), \qquad g(\varphi) = \sum_{k=1}^L \alpha_k \sin(k\varphi + \beta_k),$$

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D >

Kuramoto Model

$$\dot{\theta}_i = \omega + \sum_{j=1}^N g(\theta_j - \theta_i), \qquad g(\varphi) = \sum_{k=1}^L \alpha_k \sin(k\varphi + \beta_k),$$

Phase shift symmetry $(\theta_1, \cdots, \theta_N) \rightarrow (\theta_1 + \epsilon, \cdots, \theta_N + \epsilon)$ leads to

Kuramoto Model

$$\dot{ heta}_i = \omega + \sum_{j=1}^N g(heta_j - heta_i), \qquad g(arphi) = \sum_{k=1}^L lpha_k \sin(karphi + eta_k),$$

Phase shift symmetry $(\theta_1, \cdots, \theta_N) \rightarrow (\theta_1 + \epsilon, \cdots, \theta_N + \epsilon)$ leads to

Phase Difference Model

 $\dot{\varphi}_k = \mathcal{F}_k(\varphi_1, \dots, \varphi_{N-1}), \qquad \varphi_k = \theta_{t_h} - \theta_{t_k}$

Kuramoto Model

$$\dot{ heta}_i = \omega + \sum_{j=1}^N g(heta_j - heta_i), \qquad g(arphi) = \sum_{k=1}^L lpha_k \sin(karphi + eta_k),$$

Phase shift symmetry $(\theta_1, \cdots, \theta_N) \rightarrow (\theta_1 + \epsilon, \cdots, \theta_N + \epsilon)$ leads to

Phase Difference Model

 $\dot{\varphi}_k = \mathcal{F}_k(\varphi_1, \dots, \varphi_{N-1}), \qquad \varphi_k = \theta_{t_h} - \theta_{t_k}$

Almost Global Synchronization of Kuramoto Model Origin of the Phase Difference Model is a Milnor attractor

Phase Difference Model

 $\dot{\varphi} = \mathcal{F}(\varphi), \qquad \varphi \in [0, 2\pi)^{N-1}.$

Using the stereographic projection $\varphi_k \rightarrow x_k = \cot(\varphi_k/2)$

Rational Function Model

 $\dot{x} = F(x), \qquad x \in \mathbb{R}^{N-1}.$

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D + < D +

Phase Difference Model

 $\dot{\varphi} = \mathcal{F}(\varphi), \qquad \varphi \in [0, 2\pi)^{N-1}.$

Using the stereographic projection $\varphi_k \rightarrow x_k = \cot(\varphi_k/2)$

Rational Function Model

 $\dot{x} = F(x), \qquad x \in \mathbb{R}^{N-1}.$

Lyapunov Functions vs Lyapunov Densities

Divergence of Solutions to Infinity

Theorem

$$\exists \text{ a positive } \rho \in C^{1}(\mathbb{R}^{N-1}, \mathbb{R}), \nabla \cdot (\rho F)(x) > 0 \text{ for } x \in \mathbb{R}^{N-1}.$$

$$\downarrow$$
Almost all solutions of $\dot{x} = F(x)$ diverge to infinity.

Rational Function Model:
$$F(x) = \frac{P(x)}{q(x)}$$

SOS Condition:
$$\nabla \cdot \left(\frac{P\rho}{q}\right) = \frac{\nabla \cdot (P\rho)q - P\rho \cdot \nabla q}{q^2} > 0$$

Divergence of All Solutions to Infinity

Example

$$\dot{x}_1 = \frac{ax_1x_2^2 + bx_1^3}{x_1^4 + x_2^4 + 1} \qquad \dot{x}_2 = \frac{cx_1^2x_2 + dx_2^3}{x_1^4 + x_2^4 + 1}$$

Choosing $\rho(x_1, x_2) = x_1^4 + x_2^4 + 1$, we obtain $\nabla \cdot (F\rho) = (3b + c)x_1^2 + (a + 3d)x_2^2$.

Almost all solutions diverge to infinity if 3b + c > 0, a + 3d > 0

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators (D)

From Rational Polynomial Model to Phase Difference Model

From Rational Polynomial Model to Phase Difference Model

From Rational Polynomial Model to Phase Difference Model

Using the full permutation symmetry of Kuramoto model,

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators 4 (D) + 4 (D)

Almost all sol. of Kuramoto model converge to $\mathcal{A}(\mathcal{T}) = \bigcap_{\gamma \in \mathbb{S}^N} \bigcup_{k=1}^{N-1} \left\{ \theta_{\gamma(t_k^{\mathcal{T}})} = \theta_{\gamma(h_k^{\mathcal{T}})} \right\}$

Kuramoto model (F) is \mathbb{S}_N -symmetric: $F \circ \gamma = \gamma \circ F$, $\forall \gamma \in \mathbb{S}_N$

Almost all sol. of Kuramoto model converge to $\mathcal{A}(\mathcal{T}) = \bigcap_{\gamma \in \mathbb{S}^N} \bigcup_{k=1}^{N-1} \left\{ \theta_{\gamma(t_k^{\mathcal{T}})} = \theta_{\gamma(h_k^{\mathcal{T}})} \right\}$

Kuramoto model (F) is \mathbb{S}_N -symmetric: $F \circ \gamma = \gamma \circ F$, $\forall \gamma \in \mathbb{S}_N$

For a subgroup $\Gamma \subset \mathbb{S}_N$, Fix $(\Gamma) = \{x \in [0, 2\pi) \mid \gamma(x) = x, \forall \gamma \in \Gamma\}$ is *F*-invariant.

Almost all sol. of Kuramoto model converge to $\mathcal{A}(\mathcal{T}) = \bigcap_{\gamma \in \mathbb{S}^N} \bigcup_{k=1}^{N-1} \left\{ \theta_{\gamma(t_k^{\mathcal{T}})} = \theta_{\gamma(h_k^{\mathcal{T}})} \right\}$

Kuramoto model (F) is \mathbb{S}_N -symmetric: $F \circ \gamma = \gamma \circ F$, $\forall \gamma \in \mathbb{S}_N$

For a subgroup $\Gamma \subset S_N$, $Fix(\Gamma) = \{x \in [0, 2\pi) \mid \gamma(x) = x, \forall \gamma \in \Gamma\}$ is *F*-invariant.

For $x \in [0, 2\pi)$, $\Gamma_x = \{\gamma \in \mathbb{S}_N \mid \gamma(x) = x\}$ is called the isotropy subgroup of x.

Almost all sol. of Kuramoto model converge to $\mathcal{A}(\mathcal{T}) = \bigcap_{\gamma \in \mathbb{S}^N} \bigcup_{k=1}^{N-1} \left\{ \theta_{\gamma(t_k^{\mathcal{T}})} = \theta_{\gamma(h_k^{\mathcal{T}})} \right\}$

Kuramoto model (F) is \mathbb{S}_N -symmetric: $F \circ \gamma = \gamma \circ F$, $\forall \gamma \in \mathbb{S}_N$

For a subgroup $\Gamma \subset S_N$, $Fix(\Gamma) = \{x \in [0, 2\pi) \mid \gamma(x) = x, \forall \gamma \in \Gamma\}$ is *F*-invariant.

For $x \in [0, 2\pi)$, $\Gamma_x = \{\gamma \in \mathbb{S}_N \mid \gamma(x) = x\}$ is called the isotropy subgroup of x.

 Γ_1 and Γ_2 are said to be conjugate if there exist a $\gamma \in \mathbb{S}_N$ such that $\Gamma_2 = \gamma^{-1} \Gamma_1 \circ \gamma$

Conjugacy Classes of Isotropy groups of S_7

Proper Colorings

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D > < D >

Main Result

- \mathcal{I}_N : Conjugacy classes of isotropy subgroups of \mathcal{S}_N
- $\mathcal{I}_{\mathcal{T}}$: Conjugacy classes of isotropy subgroups assoc. to proper colorings of the tree \mathcal{T} .

Main Result

 \mathcal{I}_N : Conjugacy classes of isotropy subgroups of \mathcal{S}_N \mathcal{I}_T : Conjugacy classes of isotropy subgroups assoc. to proper colorings of the tree \mathcal{T} .

$$\mathcal{A}(\mathcal{T}) := \bigcap_{\gamma \in \mathbb{S}^{N}} \bigcup_{k=1}^{N-1} \left\{ \theta_{\gamma(t_{k}^{\mathcal{T}})} = \theta_{\gamma(h_{k}^{\mathcal{T}})} \right\} = \bigcup_{\Gamma \in \mathbb{I}_{N} \setminus \mathbb{I}_{\mathcal{T}}} \bigcup_{\hat{\Gamma} \in \Gamma} \mathsf{Fix}(\hat{\Gamma}).$$

Main Result

 \mathcal{I}_N : Conjugacy classes of isotropy subgroups of \mathcal{S}_N

 $\mathcal{I}_{\mathcal{T}}$: Conjugacy classes of isotropy subgroups assoc. to proper colorings of the tree \mathcal{T} .

$$\mathcal{A}(\mathcal{T}) := \bigcap_{\gamma \in \mathbb{S}^{N}} \bigcup_{k=1}^{N-1} \left\{ \theta_{\gamma(t_{k}^{\mathcal{T}})} = \theta_{\gamma(h_{k}^{\mathcal{T}})} \right\} = \bigcup_{\Gamma \in \mathbb{I}_{N} \setminus \mathbb{I}_{\mathcal{T}}} \bigcup_{\hat{\Gamma} \in \Gamma} \mathsf{Fix}(\hat{\Gamma}).$$

Theorem

$$\exists$$
 a positive $\rho \in C^1(\mathbb{R}^{N-1}, \mathbb{R}), \nabla \cdot (\rho F_T)(x) > 0$ for almost all $x \in \mathbb{R}^{N-1}$.

Almost all solutions of the Kuramoto model converge to $\mathcal{A}(\mathcal{T})$.

Colorings-Isotropy Classes

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators 4 🗇 + 4 🗟 + 4 🗟 + 4 🗟 + 3

Canonical Trees For N = 7

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators (D + (D + (D + (D

Isotropy group S_7

From Rational Polynomial Model to Phase Difference Model for Spanning Trees

Corollary

Let $\mathcal{T}_1, \ldots, \mathcal{T}_{\lfloor N/2 \rfloor}$ be spanning trees corresponding to partitions of N into $(1, N-1), \ldots, (\lfloor N/2 \rfloor, N - \lfloor N/2 \rfloor)$.

From Rational Polynomial Model to Phase Difference Model for Spanning Trees

Corollary

Let $\mathcal{T}_1, \ldots, \mathcal{T}_{\lfloor N/2 \rfloor}$ be spanning trees corresponding to partitions of N into $(1, N-1), \ldots, (\lfloor N/2 \rfloor, N - \lfloor N/2 \rfloor)$. Assume that $\forall k \in \{1, \ldots, \lfloor N/2 \rfloor\}, \exists$ a positive $\rho_k \in C^1(\mathbb{R}^{N-1}, \mathbb{R})$ such that $\nabla \cdot (\rho_k F_{\mathcal{T}_k})(x) > 0$ for $x \in \mathbb{R}^{N-1}$.

 Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, Özkan Karabacak:
 Kadir Has University

 Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < □ ▷ < 壹 ▷ < 毫 ▷ < 毫 ▷ < 毫 ▷ < 毫 ▷ < ₹</td>

From Rational Polynomial Model to Phase Difference Model for Spanning Trees

Corollary

Let $\mathcal{T}_1, \ldots, \mathcal{T}_{\lfloor N/2 \rfloor}$ be spanning trees corresponding to partitions of N into $(1, N-1), \ldots, (\lfloor N/2 \rfloor, N - \lfloor N/2 \rfloor)$. Assume that $\forall k \in \{1, \ldots, \lfloor N/2 \rfloor\}, \exists$ a positive $\rho_k \in C^1(\mathbb{R}^{N-1}, \mathbb{R})$ such that $\nabla \cdot (\rho_k F_{\mathcal{T}_k})(x) > 0$ for $x \in \mathbb{R}^{N-1}$.

Then, almost all solutions of the Kuramoto model are phase synchronized.

Almost global stability for Kuramoto Model for N = 3

Example

Consider the Kuramoto model for N = 3 (Ashwin, et.al., 2008) with the coupling function

$$g(x) = -\sin(x + \alpha) + r\sin(2x).$$

We define $\varphi_1 = \theta_1 - \theta_3$ and $\varphi_2 = \theta_2 - \theta_3$.

Almost Global Stability for Kuramoto Model for N = 4

Example

Consider the Kuramoto system for N = 4 (Ashwin, et.al., 2008) with the coupling function

$$g(x) = -\sin(x + \alpha) + r\sin(2x).$$

We choose a spanning tree \mathcal{T}_1^4 such that $\varphi_1 = \theta_1 - \theta_3, \varphi_2 = \theta_3 - \theta_2, \varphi_3 = \theta_2 - \theta_4$:

Now, we choose another three \mathcal{T}_2^4 such that $\varphi_1 = \theta_1 - \theta_2, \varphi_2 = \theta_1 - \theta_3, \varphi_3 = \theta_1 - \theta_4$:

 Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, Özkan Karabacak:
 Kadir Has University

 Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators < □ > < 壹 > < 毫 > < 毫 > < 毫 > < 毫 > < 毫 > <</td>

Almost Global Stability for Kuramoto Model for N = 4

Parameter plane for \mathcal{T}_1^4

Mahmut Kudeyt, Ayşegül Kıvılcım, Elif Köksal, Ferruh İlhan, <u>Özkan Karabacak</u>: Kadir Has University Certification of Almost Global Phase Synchronization of All-To-All Coupled Phase Oscillators (D + (D + (D + (D + (D + (D + (D + (D + (D + (D + (D + (D + (D + (D +

Van der Pol Oscillators

Example

Consider three identical van der Pol (VDP) systems given by

$$\epsilon \dot{x_i} = z_i + x_i - \frac{x_i^3}{3} + \sum_{j \neq i} \alpha(x_j - x_i),$$

 $\dot{z_i} = (c - x_i), \quad i = 1, 2, 3.$

For 0.5 < c < 1, the bifurcation diagram of c is

Van der Pol Oscillators

For the coupling function

$$g(x) = \alpha_1 \sin(x + \beta_1) + \alpha_2 \sin(2x + \beta_2) + \alpha_3 \sin(3x + \beta_3),$$

с	ρ
0.5	NONE
0.5867	$3.08 - 1.12y_1 - 1.12y_2 + 2.52y_1^2 - 0.2y_1y_2 + 2.52y_2^2$
0.6153	$3.09 - 2.05y_1 - 2.05y_2 + 2.56y_1^2 + 2.44y_1y_2 + 2.56y_2^2$
0.6437	$2.67 - 3.05y_1 - 3.05y_2 + 2.55y_1^2 + 1.88y_1y_2 + 2.55y_2^2$
0.6718	NONE
0.6996	$2.16 - 3.56y_1 - 3.56y_2 + 2.54y_1^2 + 3.91y_1y_2 + 2.54y_2^2$
0.7269	$1.98 - 3.66y_1 - 3.66y_2 + 2.61y_1^2 + 4.5y_1y_2 + 2.61y_2^2$
0.7539	NONE
0.7802	NONE
0.986	NONE
0.9998	NONE

Future Works

- Other connection structures
- Designing synchronizing feedback