Evolutionary Computation and Decision Making
Dr Tinkle Chugh is a Lecturer in Computer Science at the University of Exeter. He is Associate Editor of the Complex and Intelligent Systems journal. Between Feb 2018 and June 2020, he worked as a Postdoctoral Research Fellow in the BIG data methods for improving windstorm FOOTprint prediction (project funded by Natural Environment Research Council UK. He obtained his PhD degree in Mathematical Information Technology in 2017 from the University of Jyvaskyla, Finland. His thesis was a part of the Decision Support for Complex Multiobjective Optimization Problems project, where he collaborated with Finland Distinguished Professor (FiDiPro) Yaochu Jin from the University of Surrey, UK. His research interests are machine learning, data-driven optimisation, evolutionary computation, and decision-making.
Webpage: http://emps.exeter.ac.uk/computer-science/staff/tc489
Dr Richard Allmendinger is a Professor of Applied AI at the Alliance Manchester Business School, and Associate Dean for Business Engagement, Civic & Cultural Partnerships, The University of Manchester. He is also a Senior Scientist at Eharo, and AI Advisor for River Capital (private equity), Ark Biotech (bioprocessing), and GuruAI (music education). Currently, Richard is also creating a UoM software spinout focussed on identifying and repairing security vulnerabilities in source code. Richard has a background in Business Engineering (Diplom, Karlsruhe Institute of Technology, Germany + Royal Melbourne Institute of Technology, Australia), Computer Science (PhD, The University of Manchester, UK), and Biochemical Engineering (Research Associate, University College London, UK). Richard has attracted more than £40m of external funding to support research and knowledge exchange activities on the development and application of optimization, learning and analytics techniques to real-world problems arising in areas such as finance, management, engineering, healthcare, sports, music, and forensics. Richard is known for his work on non-standard expensive optimization problems comprising, for example, heterogeneous objectives, ephemeral resource constraints, changing variables, and safety constraints. Richard is a Member of the Editorial Board of several international journals, Co-Founder of the IEEE CIS Task Force on Optimization Methods in Bioinformatics and Bioengineering, and contributes regularly to conference organisation and special issues as guest editors.
Webpage: http://personalpages.manchester.ac.uk/staff/Richard.Allmendinger/default.htm
Ana B. Ruiz is a Senior Lecturer in the area of Quantitative Methods for Economy at the Department of Applied Economics (Mathematics), at the University of Málaga (Spain). She holds a PhD in Mathematics (2012) from the University of Málaga, where she also received her BSc degree in Mathematics (2006). Her research is focused on multi-objective optimization and multiple-criteria decision-making approaches, such as evolutionary algorithms, interactive methods, and reference point-based techniques, and their applications to decision-making processes arising in different fields, such as education, portfolio, sustainability, or engineering. She has participated in more than 17 research projects financed by international, national and regional institutions, and she has collaborations with several international researchers. Currently, she is one of the main researchers of a partner in a European Project granted for the development of safe and sustainable by design coatings for several industrial sectors. In addition, Ana B. Ruiz teaches graduate courses in Economics, Business Administration, and Marketing, in the Master’s Course in Quantitative Methods for Economy, and the PhD program in Economy and Business Administration.
Webpage: https://www.uma.es/departamento-de-economia-aplicada-matematicas/info/113185/ana-belen-ruiz-mora/
Hadi A. Khorshidi (organiser in 2024) is a Senior Research Fellow in Cancer Health Service Research and an Adjunct Senior Fellow in School of Computing and Information Systems at the University of Melbourne. He has extensive research experiences in medical data mining, optimisation, machine learning, and uncertainty. He completed his PhD in Applied and Computational Mathematics at Monash University in 2016. He is an Associate Investigator at ARC training centre in Optimisation Technologies, Integrated Methodologies, and Applications (OPTiMA). He has published more than 55 peer-reviewed journal articles and conference papers (Google citations 980+, H-index 18). He is a chief investigator in a joint research project awarded by Manchester-Melbourne Research Fund, and recipient of funding for Frailty Dynamic Simulation Modelling from NSW Agency for Clinical Innovation. He is an associate editor in International Journal of System Assurance Engineering and Management. He has been a member of editorial boards in International Journal of Quality and Reliability Management and The TQM Journal. He has served as a guest editor for IEEE Transactions on Evolutionary Computation (IEEE TEVC) and Information Systems and Operations Research (INFOR).
Webpage: https://scholar.google.com.au/citations?user=P0VpePkAAAAJ&hl=en
Dr Jussi Hakanen (as organiser in 2019-2023) is a Senior AI Scientist at Silo AI. He received MSc degree in mathematics and PhD degree in mathematical information technology, both from the University of Jyväskylä, Finland. His research is focused on multiobjective optimization and decision making with an emphasis on interactive multiobjective optimization methods, data-driven decision making, computationally expensive problems, explainable/interpretable machine learning, and visualization aspects related to many-objective problems. He has participated in several industrial projects involving different applications of multiobjective optimization, e.g. in chemical engineering. He has been a visiting researcher in Cornell University, Carnegie Mellon, University of Surrey, University of Wuppertal, University of Malaga and the VTT Technical Research Center of Finland. He has a title of Docent (similar to Adjunct Professor in the US) in Industrial Optimization at the University of Jyväskylä.
Webpage: https://scholar.google.com/citations?user=s7ij6T0AAAAJ&hl=fi
Professor Julia Handl (as organiser in 2023) obtained a Bsc (Hons) in Computer Science from Monash University in 2001, an MSc degree in Computer Science from the University of Erlangen-Nuremberg in 2003, and a PhD in Bioinformatics from the University of Manchester in 2006. From 2007 to 2011, she held an MRC Special Training Fellowship at the University of Manchester, and she is now a Professor in Decision Sciences at Alliance Manchester Business School. A core strand of her work explores the use of multiobjective optimization in unsupervised and semi-supervised classification. She has developed multiobjective algorithms for clustering and feature selection tasks in these settings, and her work has highlighted some of the theoretical and empirical advantages of this approach.
Webpage: https://personalpages.manchester.ac.uk/staff/julia.handl/