
The Philosophy of Mathematics Education Journal No. 42 (2024) 

1 
 

INTEGRATING ROCK CLIMBING INTO THE MATHEMATICS 
CURRICULUM — AN ENACTIVE AFFORDANCE-BASED APPROACH  

 

Gabriela Hernandez 
 

University of California, San Diego  
gmhernandez@ucsd.edu  

  
Christian Kronsted 

 
Merrimack College, Massachusetts 

kronstedc@merrimack.edu  

 

Abstract 

This paper proposes a novel approach to mathematics education by 

integrating rock climbing into the math curriculum. Based on embodied 

cognition and affordances, we argue that both mathematics and rock 

climbing involve embodied problem-solving processes. Current mathematics 

education contributes to an exclusionary culture hostile to marginalized 

students. Rock climbing offers a unique opportunity to address these issues 

by providing a concrete and embodied context for mathematical problem-

solving. Through the lens of enactivism and ecological psychology, we 

demonstrate the overlap between the cognitive processes involved in rock 

climbing and mathematical problem-solving. Both activities involve the 

continuous cycle of planning, execution, and assessment through affordance-

facilitated agent-environment couplings. This overlap allows rock climbing 

to serve as a powerful analogy for the problem-solving processes inherent in 

mathematics. Affordances are crucial for understanding why rock climbing 

and mathematics offer rich problem-solving experiences. Climbing routes 

and mathematical equations become meaningful through training and 

enculturation, revealing possibilities for action within an action-perception-

affordance loop. The integration of rock climbing in mathematics education 

can foster a more engaging learning environment, enhance problem-solving 

mailto:gmhernandez@ucsd.edu
mailto:kronstedc@merrimack.edu


Hernandez and Kronsted  Integrating Rock Climbing into the Mathematics Curriculum 

2 
 

skills, and bridge the gap between seemingly abstract (in-the-head) 

mathematical concepts and real-world applications. 

Introduction — Rethinking Mathematics in the Name of Equity 

Despite decades of evidence that learning is better facilitated through activities and 

movement, much of high school and college education is still overwhelmingly 

sedentary (Becker, 2023). Simultaneously, education in the United States (strongly 

exacerbated by the COVID-19 pandemic) is undergoing a crisis as students fall 

further and further behind the rest of the industrialized world across the 

humanities, critical thinking, collaboration, and STEM (Graesser et al., 2020; 

NAEP, 2023; Samuel et al., 2017; Schleicher, 2019). Due to inequity STEM as a 

profession is still predominately white straight and male (National Center for 

Science and Engineering Statistics, 2023). Furthermore, even the newest published 

volume on mathematical education is strikingly disembodied (Bicudo et al., 2023). 

As many education specialists have argued, it is urgently time to integrate art and 

movement into institutional education — kindergarten through college (Becker, 

2023; Kisida & LaPorte, 2021; Mobley & Fisher, 2014).    

We are addressing the need for a more equitable and just culture in 

mathematics by transitioning from the deeply entrenched and rigid binaries of 

Cartesian dualism still prevalent in math education today to a more embodied 

learning approach. We here use autopoietic enactive cognitive science to 

https://paperpile.com/c/2Q3D5C/m9Ja
https://paperpile.com/c/2Q3D5C/emZr+ghUU+GJn4+J8Hx
https://paperpile.com/c/2Q3D5C/emZr+ghUU+GJn4+J8Hx
https://paperpile.com/c/2Q3D5C/acSz
https://paperpile.com/c/2Q3D5C/acSz
https://paperpile.com/c/2Q3D5C/fxCg
https://paperpile.com/c/2Q3D5C/Nity+m9Ja+VGkc
https://paperpile.com/c/2Q3D5C/Nity+m9Ja+VGkc


The Philosophy of Mathematics Education Journal No. 42 (2024) 

3 
 

demonstrate why rock climbing can be effectively integrated into the math 

curriculum. Through this embodied approach to mathematics, we aspire to change 

the culture at large as the perception of what it means to do math and who can do 

math is expanded and diversified. 

Using enactivism, we demonstrate that there are overlaps between 

mathematical cognition and rock climbing. This approach is to show how a future 

(fun, engaging, and effective) math curriculum can be built around the 

incorporation of climbing into math. This type of embodied integration with math 

is not unique to rock climbing; it can be done with dance and many other forms of 

physical activity (Kronsted & Gallagher, 2021; Moyer-Packenham et al., 2016; 

Stern & Bachman, 2021). However, we here choose to focus on rock climbing 

because rock climbing requires an explicit form of problem-solving that easily 

transfers to the domain of mathematical problem-solving.   

Specifically, we argue that both rock climbing and solving math problems 

involve the process of explicitly creating a cognitive “plan of action” that consists 

of expectations and planned movement sequences (sensorimotor and attention 

schemes), in accordance with social-cultural rules and material conditions. Such 

planning involves the body recombining its own sensorimotor dispositions, 

attentional patterns, and expectations and reordering the body's field and salience 

of affordances - All to meet the demands of the problem within a specific social, 

https://paperpile.com/c/2Q3D5C/PqnV+hhv7+GfsD
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cultural, material, and embodied circumscribed frame. Notably, both rock climbing 

and math problem-solving involve the periodic “backing-off” to asses and update 

the cognitive plan. In this way, there is a skillful recursive loop between execution 

and planning that undergirds both math and rock-climbing problem-solving. 

Training the skillset of one is also training the skillset of the other. Thus, rock 

climbing can fruitfully be implemented into mathematics courses.   

Furthermore, enactive cognition as a theoretical framework is still often 

accused of being unable to deal with so-called “representation-hungry,” higher-

order, “offline,” abstract cognition such as simulation or planning (Aizawa, 2010; 

Clark & Toribio, 1994; Edelman, 2003; Williams, 2018). In this line of argument, 

complex mathematics “in the head” is the prime example of a cognitive function 

that is offline, higher-order, and seemingly impossible without symbolic mental 

representations. While plenty of thinkers have already outlined accounts of higher-

order non-representational cognition, demonstrating the overlap between rock 

climbing and mathematics is yet another blow against the “scaling-up” objection to 

embodied enactive cognitive science(Brancazio & Segundo-Ortin, 2020; 

Gallagher, 2017; Hutto & Myin, 2013; Kronsted et al., 2023; Oliveira et al., 2021; 

Zahnoun, 2021).  

First, we provide a quick tour through the basics of mathematics and then 

the basics of rock climbing. We then proceed to explain these two domains through 

https://paperpile.com/c/2Q3D5C/E3wu+Fk9E+PRCZ+N37w
https://paperpile.com/c/2Q3D5C/E3wu+Fk9E+PRCZ+N37w
https://paperpile.com/c/2Q3D5C/vNsS+vgxw+V6P0+bN3W+biit+b8VE
https://paperpile.com/c/2Q3D5C/vNsS+vgxw+V6P0+bN3W+biit+b8VE
https://paperpile.com/c/2Q3D5C/vNsS+vgxw+V6P0+bN3W+biit+b8VE
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affordance-based autopoietic enactivism. We then look more explicitly at the 

overlap in cognitive processes in rock climbing and math. We end with notes about 

the next steps for concrete implementation into actual math classes.    

Mathematics What is it? — Problems with Current Approaches 

Math education often involves the instruction of “abstract” concepts, logical 

reasoning, one-way problem-solving, and precise discourse. Traditional practices 

in the math classroom often prioritize rote memorization, algorithmic procedures, 

and binaries of right or wrong. These features of the traditional mathematics 

classroom are prevalent across the traditional American education system. Though 

researchers are aware that these outdated methods (Becker, 2023)--informed by 

behaviorism and traditional cognitive science--are ineffective, the field of math 

education is quite stagnant in its evolution to break beyond rudimentary 

instructional practices (Bicudo et al., 2023). 

Mathematics, in particular, has an exclusionary culture that is shaped by 

assumptions, norms, and values that are informed by white supremacy and the 

patriarchy (Hottinger, 2016). Gendered and racial hierarchies are pervasive within 

mathematics classrooms, leaving women, Black, and Latinx students at the bottom 

(National Center for Science and Engineering Statistics, 2023). Additionally, many 

students perceive the culture surrounding mathematics to be extremely rigorous 

https://paperpile.com/c/2Q3D5C/m9Ja
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and elite, which naturally excludes students from marginalized groups (Leyva et 

al., 2021). Traditionally, mathematics has been used as a tool for imperialism and 

colonialism as it acts as a means to exclude and stratify by justifying and 

perpetuating binaries and hierarchies (Gutierrez, 2017). 

Despite decades of scientific inquiry into the naturalistic origins of math, 

many students are still taught the “romance of math” (Lakoff & Núñez, 2000; 

Núñez, 2008). For instance, math as objective, abstract, pure, and rote procedures 

and formulas is still pervasive in the classroom (Battey & Marshall, 2023). 

Platonism concerning mathematics posits that abstract entities, which are objective 

and timeless, exist independently of the physical world and the symbols employed 

to denote them. Students around the world are still taught romantic platonic 

definitions of mathematics as nature’s language of “truth.” For example, one 

classic definition of math that still lingers in the literature and education practice of 

math is the National Research Council’s 1989 definition:  

As a practical matter, mathematics is a science of pattern and order. Its 

domain is not molecules or cells, but numbers, chance, form, algorithms, and 

change. As a science of abstract objects, mathematics relies on logic rather 

than observation as its standard of truth, yet employs observation, 

simulation, and even experimentation as a means of discovering truth. 

(National Research Council, 1989, p. 31) 

https://paperpile.com/c/2Q3D5C/QKvX+SHsV
https://paperpile.com/c/2Q3D5C/QKvX+SHsV
https://paperpile.com/c/2Q3D5C/u9l2
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The surviving myth amongst scholars and laypeople alike is that math connects to 

objective, timeless platonic entities. As Nunez aptly summarizes the myth: 

Mathematics has a truly objective existence, providing structure to this 

universe and any possible universe, independent of and transcending the 

existence of human beings or any being sat all. Mathematics is abstract and 

disembodied–yet it is real. Human mathematics is just a part of abstract, 

transcendent mathematics (the concrete and mundane side of it) (Núñez, 

2008, p. 340). 

In extension of the romance of math is the myth that some people simply do not 

have the capacity to tap into the true nature of reality. In contrast, other people are 

innately gifted in understanding and manipulating the building blocks of 

existence.  

Despite problem-solving being hugely important for math education, 

“problem-solving” is a nebulous concept in the literature still often connected to 

the platonic notion of mathematics as capital-T truth (Papert, 1980). Halmos 

(1980) even argues that problem-solving is at “the heart of mathematics” (p. 524), 

and Schoenfeld (1985; 1992) conceptualizes problem-solving as the very core of 

mathematics. As critical social scientist and math educator Gutiérrez argues, the 

culture of professional mathematics and math research still believes that; 

“mathematics carries with it something separate from humans that can be conveyed 

https://paperpile.com/c/2Q3D5C/SHsV/?locator=340
https://paperpile.com/c/2Q3D5C/SHsV/?locator=340
https://paperpile.com/c/2Q3D5C/sG1i
https://paperpile.com/c/2Q3D5C/Z5Qm
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to individuals, thereby affording them a more powerful view of the world” 

(Gutiérrez, 2013). The upshot of the platonic romance of math is that mathematical 

problem-solving is seen as independent of earthly contexts such as emotion, 

hunger, fatigue, socioeconomic status, being a bored teenager, or any of the other 

embodied and social factors reserved for earthly creatures. Consequently, the myth 

of math as disembodied and context-free has led to severe equity problems in math 

education and the STEM workforce.      

Again, we see that at the center of the platonic myth of mathematics is the 

commitment to the idea that problem-solving in math is disembodied. Problem-

solving is often framed as a novice to expert progression, characterized by an 

information-processing approach (Garofalo and Lester, 1985; Schoenfeld, 2013) 

and the concept of metacognition. Many math education researchers rely on 

Flavell’s definition of metacognition in their conceptions of problem-solving 

(Garofalo and Lester, 1985; Stillman & Galbraith, 1998):  

Metacognition refers, among other things, to the active monitoring and 

consequent regulation and, orchestration of these processes in relation to the 

cognitive objects on which they bear, usually in the service of some concrete 

goal or objective (Resnick, 1976).  

Some researchers even argue metacognition is the driving force in problem-solving 

and is embedded within every phase of the problem-solving process (Lester, 1994). 

https://paperpile.com/c/2Q3D5C/Z5Qm
https://paperpile.com/c/2Q3D5C/FIFe+rsCT
https://paperpile.com/c/2Q3D5C/FIFe+H1Wn
https://paperpile.com/c/2Q3D5C/r4t0
https://paperpile.com/c/2Q3D5C/YpkG
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Classically, while metacognition involves cognitive processes, it does not 

inherently involve embodiment. Instead, it focuses on cognitive processes such as 

monitoring, regulation, and orchestration, which are often considered disembodied 

mental processes. In metacognition, the focus is on mental activities rather than 

embodiment (Clark & Toribio, 1994).  

If mathematics is platonic, disembodied, and context-free, then there is no 

reason to integrate advanced mathematics teaching into contextual, embodied, 

goal-oriented, and pragmatic teaching. Such an unwillingness to connect math 

education with real conditions on the ground, in turn, hinders entry into math 

professions except for a select few types of students. The tired old report, “I am 

just not a math kinda person,” is directly connected to structures that uphold the 

romance of math and, with it, the myth that there are “math” and “non-math” 

people. 

Looking at the numbers, again we see that the platonic conception of math is 

not socially innocent. Historically, platonic math education has led to racial, 

gender, and class disparities in math learning and professionalization. In fact, these 

issues are still pervasive in STEM today (National Center for Science and 

Engineering Statistics, 2023). The lack of diversity is evident as women comprise 

only 28% of the workforce in STEM. The lack of women in the STEM workforce 

is connected to the lack of women majoring in STEM in college. In fact, men 

https://paperpile.com/c/2Q3D5C/E3wu
https://paperpile.com/c/2Q3D5C/acSz
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significantly outnumber women, where 21% of engineering majors and 19% of 

computer science majors are women (National Science Board, 2018). In addition to 

the lack of women in the field of STEM, Black, Indigenous, and people of color 

(BIPOC) students are also vastly underrepresented. In 2018, only 11.4% of 

engineering bachelor’s degrees went to Hispanic students, and only 4.2% to Black 

students (Roy, 2019). Several key factors perpetuate this gendered and racialized 

gap, such as gender and racial stereotypes, male-dominated cultures, fewer role 

models, and anxiety surrounding mathematics (Spencer et al., 2016; Leyva et al., 

2021). The underrepresentation of women and people of color in the field of 

STEM has significant drawbacks, especially considering the economic benefits of 

being in the STEM workforce (National Center for Science and Engineering 

Statistics, 2023). Holding on to the idea that math is context-free facilitates 

educators overlooking or ignoring equity issues in math education.   

One way to change the equity problem in mathematics as a professional field 

is by changing how we teach math. While humans are embodied and kinetic 

beings, much math is still taught in a dry, uncontextualized, sedentary, 

disembodied fashion. From other fields, we know that improving the quality of 

instruction when students are first introduced to the subject matter improves the 

chances that students other than white, male, cis-gendered, wealthy, and rich 

students will enter the field. As an example, we can point to the success stories of 

https://paperpile.com/c/2Q3D5C/acSz
https://paperpile.com/c/2Q3D5C/acSz
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the non-profit initiative Black Girls Code in getting young black women to enter 

computer science education and careers (https://www.wearebgc.org/). In short, 

better instruction methods mean more people entering a given field - hating math 

class does not produce more mathematicians. Loving math class (even despite not 

having an immediate affinity for math) does produce more mathematicians. 

Integrating various movement-based approaches to math education and learning (in 

this case, rock climbing) can help alleviate some of the inequities in the college-to-

STEM pipeline.  

Along with a growing field of researchers, we argue that the metacognition 

approach to mathematics and math learning is misguided. Math is not a matter of 

disembodied processes but is rather deeply embodied — for example, learning 

math has been shown to be tied to learning new sensorimotor behavioral schemes 

(Abdu et al., 2023; Lakoff & Núñez, 2000; Menary, 2015; Shvarts & Abrahamson, 

2023; Stern & Bachman, 2021). We, therefore, add to the literature on embodied 

math by demonstrating the overlap between math and rock climbing. We can 

understand why these two activities cognitively overlap by looking at both through 

the lens of enactive embodied cognition and affordances. While the two activities 

do have some obvious dissimilarities, one does not get hurt when getting a math 

problem wrong, we here focus on highlighting the relevant similarities between 

math and rock climbing. 

https://paperpile.com/c/2Q3D5C/yvIK+43rY+oxJq+GfsD+QKvX
https://paperpile.com/c/2Q3D5C/yvIK+43rY+oxJq+GfsD+QKvX
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What is Rock Climbing?  

Rock climbing is a physical and intellectual activity where individuals ascend 

either natural rock formations or artificial climbing walls made of plastic to make it 

to the top. For this paper, we will consider rock climbing, specifically at an indoor 

artificial climbing wall known as a climbing gym. The climbing walls consist of 

various routes— a pre-determined arrangement of climbing holds, delineated by 

different colors, intended to be scaled by individuals. The routes are often changed 

every two to three months, giving climbers plentiful time to work, or project, 

various routes. Climbers must use specialized equipment such as harnesses, ropes, 

and climbing shoes to safely and optimally navigate various types of climbing 

features. For the convenience of the reader, we have provided a glossary at the 

bottom of this section with some of the most commonly used specialized rock 

climbing terms.  

Rock climbing comes in different disciplines, but we will only discuss the 

disciplines that are observed in indoor rock climbing: 

a) Bouldering. In bouldering, climbers tackle short, challenging routes, known as 

problems. Bouldering is done without a harness or rope. In a gym, these routes are 

often 10-15 feet high, and safety is ensured by thick pads below that cushion falls. 

Bouldering is often conceptualized as a sprint, in which climbers must quickly, 

intentionally, and precisely move through powerful moves in a short time. 



The Philosophy of Mathematics Education Journal No. 42 (2024) 

13 
 

b) Sport climbing. Sport climbing is a discipline conceptualized closer to a 

marathon, as it is a challenge to endurance and technique over a tall route, which 

often ranges from 40 to 60 feet in the climbing gym. In lead climbing specifically, 

climbers clip into quickdraws for safety. Thus, if an individual falls on a sport 

climbing route, they will fall to their last point of safety. In top-roping, a rope runs 

through an anchor at the top of the route, and the climber is attached to the rope via 

a harness.  

c) Speed climbing. Speed climbing is a discipline in which there is a set route that 

is intended to be climbed as quickly and efficiently as possible. The route requires 

immense power and coordination, and at Olympic levels, the best climbers are as 

fast as five seconds. The margin for error is minimal. Indeed, the perfection of pre-

planning is essential to being a successful speed climber.  

Rock climbing offers a distinctive problem-solving arena, exploring 

embodied cognition, collaboration, individual work, and unique action possibilities 

absent in traditional academic contexts because problem-solving is instantiated in 

the physical material. When rock climbing in the gym, climbers partner up on 

different routes. One person is climbing up the route while the other is belaying. 

When someone is climbing at their limit, they are challenged right beyond their 

skill level on a specific route. The person on the wall embarks on their journey up 

the route, facing unique challenges that must be overcome numerous times as they 
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progress up the wall. When the climber is facing the crux— there may be several— 

they must stop and calibrate. This could mean that the climber finds a decent hold 

to rest on while calibrating, or they let go altogether and fully rest as they prepare 

for the challenging movement. Sometimes the climber incorrectly “anticipates the 

beta,” and the climber must back away and reevaluate. Additionally, the belayer 

may assist the climber in overcoming the crux by offering “beta,” but ultimately, it 

is up the climber to problem-solve their unique body positioning and physical and 

mental capabilities. Ultimately, what distinguishes an expert climber from a novice 

climber is one that climbs efficiently and conserves energy, especially through the 

most challenging parts. Elegance is the manifestation of efficiency and energy 

conservation. In essence, an expert rock climber is an expert elegant problem-

solver.  

In general, each difficult position that a climber finds themselves in is 

experienced as a unique sub-problem that must be solved. To advance up the wall 

the climber must both solve hold-to-hold problems, and the overarching problem 

of the whole route. It is often said by people in the climbing community that “rock 

climbing is just problem-solving with the body.”  

One of the ways we can see that rock climbing is problem-solving like math 

is the possibility of mental fatigue. These sub-problems that must be solved, 

particularly when a climber is at their limit, are both physically and cognitively 
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demanding. This is especially the case for lead-climbing, since this form of 

climbing has added dimension of fear. In lead climbing in the gym, the climbers 

bring up the rope with them, clipping into quickdraws every 5-7 feet, meaning that 

if they fall they can fall much further and potentially more painfully than in a 

regular top-rope climb. This added layer of fear induces more intentional and 

mindful movement, heightening the cognitive load as climbers must strategize not 

only for physical performance but also for safety. Therefore, the mental fatigue 

experienced in rock climbing, especially in lead climbing, is very similar to the 

cognitive fatigue in mathematical problem-solving, that also stems from increased 

cognitive load. While math students typically will not hurt themselves if they fail 

at a math problem, the experience of being overwhelmed, at one’s limit, or in front 

of an insurmountable obstacle remains analogous.   

The connection between mathematical problem-solving and problem-solving 

in rock climbing becomes even more obvious when we look at bouldering, in 

which each route is literally called a “problem.” Bouldering routes are lower to the 

ground, and are designed to be tricky with a specific solution. Each route requires 

concentrated physical and mental exertion, happening in very short periods of time. 

When entering a bouldering area, you will often see several climbers working on 

the same problem, sharing strategies and different techniques to make it to the top 

of the problem, just like math students in a classroom working together to solve a 
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problem. However, once again, when on the wall, it is ultimately up to the climber 

to problem-solve, given their unique body positioning and capabilities.  

Each individual has different constraints that influence their personalized 

approach. Climbers' diverse strategies, shaped by physical and mental constraints, 

not only enhance their problem-solving skills but also serve as valuable analogies, 

offering insights that can be applied to various academic problem-solving domains. 

As a climber makes their way up a climb that is appropriately challenging 

for their skillset, they must constantly renegotiate their body positioning to 

preserve energy and attentional resources. Similarly, in the realm of math problem-

solving, students are using both energy and attentional resources — solving math 

problems is inherently connected to schemes of attention (Mason, 2023). The 

explicit physical nature of rock climbing demands a strong sense of attention and 

presence in the moment, as physical limitations and a fear of falling force the 

climber to be attentionally anchored in the present moment. The climber must 

intensely focus on their body, movements, and environment. Overall, learning the 

embodied and attentional techniques of rock climbing can be directly transferred 

back into the domain of math problem-solving because the activities require 

similar cognitive and attentional skills.   

Climbing Glossary  

 

https://paperpile.com/c/2Q3D5C/DcIB
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Term Explanation 

Backing-off Taking a step back from a climbing sequence to reassess the 

movement. This is often done in a somewhat restful position.  

Belaying  Managing the safety rope system to protect a climber from falling 

while they ascend or descend the wall. 

Beta The specific/subjective sequence for a section of a route (one 

possible solution for a problem). 

Bouldering  A type of climbing where climbers tackle short, challenging 

routes, known as problems. Bouldering is done without a harness 

or rope. In a gym, these routes are often 10-15 feet high, and 

safety is ensured by thick pads below that cushion falls. 

Crux The hardest parts of the route. 

Cruxing Out When the climber is actively at the hardest part of the climb.  

jug A type of climbing hold that is easy to grip, hang off of, and 

conserve energy on. A jug provides possibilities for further 

movement upwards. 

jug-able To grab a hold optimally to conserve energy while grabbing it. 
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Lead- 

climbing 

A type of climbing where climbers clip into quickdraws for safety. 

If an individual falls while lead climbing, they will fall to their last 

point of safety. 

Projects A route at a climber’s limit that takes an extended amount of time 

to send.  

Route  A pre-established climb/path in the gym, designated by different 

colored holds and varying in difficulty.  

Send Completing a route without falling. 

Take  The act of the belayer taking slack in the rope which is often 

followed by resting. 

Top-roping  A type of climbing where a rope runs through an anchor at the top 

of the route, and the climber is attached to the rope via a harness.  
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Affordances 

Relations of Possible Action 

To connect rock climbing and mathematics, we need to understand the conceptual 

apparatus of affordances. Originally coined by James Gibson, affordances are 

possibilities for action that exist between an animal and features in its environment 

(Gibson, 1977, 1979). While left fairly vague and barebones by Gibson, research 

on affordances has blossomed into ecological psychology, enactivism, the skilled 

intentionality framework, and more. While there are scholarly debates about the 

ontological status of affordances (are they representations, are they objective or 

subjective), we here follow the enactive and embodied route of Chemero — 

affordances are relations of possibility that exist between an agent and its 

environment (Chemero, 2009). In the literature, the most classic (but boring) 

examples include a cup affording graspability, a chair sit-ability, a bike ride-

ability, and so on. In short, cognitive agents (humans and animals alike) experience 

their environments in terms of what they can do with that environment — in terms 

of possible actions. This is so even if that environment is virtual, abstract, or laden 

with symbols (Kronsted & Gallagher, 2021). 

Since affordances are relations, a cup does not afford drink-ability without 

any agents present. A cup also does not afford drinkability if the agent is a spider 

https://paperpile.com/c/2Q3D5C/PqnV
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or some other organism that cannot use the cup whether for embodied, social, or 

other reasons. Affordances only exist as relations of possibility between specific 

agents, with specific bodies, and their specific environments (Baggs & Chemero, 

2019). For example, for the untrained person, a configuration of American Football 

players is simply experienced as an intimidating wall of meat and armor. However, 

for the trained agent, the configuration affords a wealth of possibilities, passability, 

tackle ability, loopholes, openings, trick shots, runs etc. Yet the untrained player or 

untrained audience simply experiences bodies violently piling on top of one 

another. The actionable affordance only exists as relations between specific agents 

and specific conditions. Similarly, the trained mathematician looks at a 

complicated board full of equations and sees a wealth of affordances, while the 

untrained student experiences opaque hieroglyphics with a hidden meaning. 

Affordances are relations for actions that are brought into being as links between 

specific agents and specific environments.    

As relations, affordances exist for each agent depending on their physical 

structure, capabilities, current embodied states (fatigue, hunger, anxiety, joy, 

excitement, ability disability, etc.), and more. For example, because of the general 

structure of the human hand, a crevice on a rock wall affords gripability. However, 

despite being far more agile the same crevice does not afford grip-ability for a cat 

since they do not have fingers and thumbs. In reverse, the top of the bookshelf 

https://paperpile.com/c/2Q3D5C/iT0h
https://paperpile.com/c/2Q3D5C/iT0h
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affords rest-ability for a cat, given its size and ability to jump, but does not afford 

rest-ability to a human. Furthermore, affordances are highly dependent on skill. 

The rock wall crevice only affords grip-ability for a human who has mastered the 

right technique, has the right strength, and is not injured. A novice climber looking 

at a “V12, 8A+” wall will experience very few affordances; the expert, on the other 

hand, will experience a wealth of possibilities. Only with training does the whole 

wall become experienced holistically as a series of “jug-able” movement series 

(Rucińska, 2021).  

 

Training and Skill 

To the untrained person, differential equations mostly look like mysterious 

hieroglyphics, perhaps with an aesthetic of depth and complexity (think here of any 

movie in which the film is attempting to demonstrate the intellect of the character 

by placing them in front of a whiteboard full of equations). However, for the 

person with mathematical training, the “mysterious” quality of the math-

hieroglyphics is replaced by meaningful symbols that afford direct actions for 

solving. This is similar to the experience of hearing a language one does not 

understand versus learning that language. Once the language is learned, it will 

never sound the same again because it is now meaningful and affords responding 

(Cuffari et al., 2015). Whether doing something “manual” like working a Two-

https://paperpile.com/c/2Q3D5C/KHnm
https://paperpile.com/c/2Q3D5C/t8Dl
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Person Crosscut Saw or manipulating symbols on a screen, affordances become 

meaningful with skill and enculturation and continually reveal themselves through 

action in an action-perception-affordance loop. 

However, having a wealth of affordance available does not necessitate 

action. Luckily, agents do not always have to choose between their entire 

landscape of affordances. Our individual field of affordances consists of the 

affordances that are available and relevant to us (Baggs & Chemero, 2019; 

Rietveld & Kiverstein, 2014). Not all affordances stand out to the agent with equal 

salience. Rather, depending on embodied factors (thirst, hunger, fatigue, mood, 

sickness, and health, etc.), social factors (norms, laws, relationships, personal 

finances, identity, etc.), material factors (rain versus sunshine, cramped space 

versus wide open, obstacles, etc.), and many other factors, affordance stands out at 

different strength (Brancazio, 2020; Dings, 2018, 2020; van Dijk & Rietveld, 

2017). The affordance of bike-ability does not stand out strongly to a person with a 

broken leg. Eat-ability does not stand out strongly to the person with an upset 

stomach. In reverse, the purchase-ability of Romeo Santos concert tickets stands 

out strongly to the person who loves bachata. The drinkability of the water bottle is 

highly salient to the thirsty. The scalability of the wall is salient to the rested and 

excited climber. Across a range of dynamically changing factors, an agent’s field 

https://paperpile.com/c/2Q3D5C/QVGL+iT0h
https://paperpile.com/c/2Q3D5C/QVGL+iT0h
https://paperpile.com/c/2Q3D5C/JJzP+7lRJ+COMK+aFUW
https://paperpile.com/c/2Q3D5C/JJzP+7lRJ+COMK+aFUW
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of affordances is constantly changing, including the distribution of affordance 

salience (Gallagher, 2020).  

Nested Social Cultural Affordances 

Affordances are not just about immediate action. Affordances are often dense and 

“nested” — they tell the agent what can be done multiple steps ahead (Araújo et 

al., 2019; Gaver, 1991; Hacques et al., 2021; Rucińska, 2021). As agents gain more 

expertise, they start seeing not only the immediate actions available in the 

environment but, with each affordance, the chain of actions across various 

timescales that acting on the affordance leads to. That is affordances set up the 

agent for future action. Experiencing the grasp-ability of the cup is also 

experiencing the drink-ability of water from the tap. This nested information is 

present in short-term high-dynamic interactions like sports or dance (Araújo et al., 

2019; Kimmel & Rogler, 2018; Kronsted, 2021) and less volatile activities such as 

solving math problems. With the right training, looking at a quadratic equation 

means the equation affords not just the first step but the next several steps of 

solving the equation.   

Nested affordances also set up agents for future action across longer time 

scales; for example, checking the subway schedule also affords going to work 

(Brancazio & Segundo-Ortin, 2020). Through skill development and socialization, 

https://paperpile.com/c/2Q3D5C/KdvV
https://paperpile.com/c/2Q3D5C/N8CM+KHnm+ihM6+WTdl
https://paperpile.com/c/2Q3D5C/N8CM+KHnm+ihM6+WTdl
https://paperpile.com/c/2Q3D5C/F0Jp+ihM6+yLAT
https://paperpile.com/c/2Q3D5C/F0Jp+ihM6+yLAT
https://paperpile.com/c/2Q3D5C/V6P0
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our short and long-term intentions bring about information-rich nested affordances 

in the environment, that sets us up for future engagement with other affordances. 

For example, in climbing, expert-level affordances include seeing the whole wall 

as affording various climbing styles (Rucińska, 2021). Similarly, with training, the 

mathematician will see equations as affording styles of mathematical engagement 

(for example, factorable, reducable, integrateable, etc.). Long-term intentions such 

as planning to see Beyonce in concert next year or finishing a Ph.D. make 

cascading changes to the agent’s dispositions so that they will interact with 

different affordance with different saliences (Bratman, 1987, 1999). Skill, 

socialization, and planning bring into being nested affordances, which change 

available future nested affordances (Gallagher, 2020).  

No matter how seemingly “internal” and sedentary the activity (for example, 

traditional math), acting on affordance is still a matter of embodied action (Kyselo 

& Di Paolo, 2015). Using pen and paper, gesturing to oneself in the air, modulating 

once facial features, changes in brain activity, hormone production, breath patterns, 

and more are all part and parcel of a cognitive process in which the body attune 

itself to the environment (Beer & Di Paolo, 2023; Rucińska & Gallagher, 2021). 

“Thinking very intensely in the head” is a process that is facilitated by the 

environment and a state that the agent is actively perpetuating (much like choosing 

to hold one’s breath). Everything the agent was doing up until the moment of the 

https://paperpile.com/c/2Q3D5C/KHnm
https://paperpile.com/c/2Q3D5C/DPSK+UpQB
https://paperpile.com/c/2Q3D5C/KdvV
https://paperpile.com/c/2Q3D5C/zA24
https://paperpile.com/c/2Q3D5C/zA24
https://paperpile.com/c/2Q3D5C/vcZo+P2ch
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intense internalized thinking is sensorimotor activity, and even when “thinking in 

the head” the agent is still actively moving their eyes across the visual field, 

changing or holding a posture, controlling their breath etc. This view of “internal 

thought” is supported by the empirical research on brain and body sensorimotor 

activation patterns which demonstrate that thinking about actions (for example, 

throwing a ball, or moving a variable from one side of the equation to the other) 

activates the same sensorimotor circuits in the brain and body short of performing 

the action (Gallese, 2016, 2020; Gallese & Sinigaglia, 2011; Rizzolatti et al., 

2001).     

Finally, It is crucial to understand that affordances are also cultural (Rietveld 

& Kiverstein, 2014), social (De Jaegher et al., 2010), and tied to identity 

(Brancazio, 2020). We live in dense cultural environments that we navigate with 

ease because we have been socialized into certain socially and culturally relevant 

skills and habits that exist uniquely in our social material niches. Lying, for 

example, is a skill that depends on mastering available social and cultural 

affordances (Kronsted et al., 2023). While climbing is a very physical skill the 

activity is still dependent on several social affordances that only become live 

between the agent and environment once the agent is properly enculturated into a 

climbing community. As a simple example, climbers are only allowed to use holds 

of the same color on each wall. Similarly, there are various forms of etiquette 

https://paperpile.com/c/2Q3D5C/BWMQ+1LLr+LqcV+aRdv
https://paperpile.com/c/2Q3D5C/BWMQ+1LLr+LqcV+aRdv
https://paperpile.com/c/2Q3D5C/QVGL
https://paperpile.com/c/2Q3D5C/QVGL
https://paperpile.com/c/2Q3D5C/U5e9
https://paperpile.com/c/2Q3D5C/7lRJ
https://paperpile.com/c/2Q3D5C/vgxw
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around when to climb, how to support others, ask for feedback, and so on. Math is 

also highly reliant on social and cultural affordances. The symbols used in math 

only become meaningful affordances within human cultures within specialized 

math-making contexts. Whether the physicality of an escalator, a rock wall, a 

traffic sign or a math problem, all require enculturation into a rich social 

environment of practices (Raja & Heras-Escribano, 2023; Rietveld & Kiverstein, 

2014; van Dijk & Rietveld, 2017). The affordances provided by symbols and signs 

only become affordances to agents socialized into the practice environments. 

Autopoietic Enactivism 

As a research field enactivism comes in multiple varieties, including sensorimotor 

enactivism (O’Regan & Noë, 2001), radical enactivism (Hutto & Myin, 2013, 

2017), autopoietic enactivism (Di Paolo et al., 2017; Thompson, 2007; Varela et 

al., 1991), scientific enactivism (Beer, 2023) and others (Meyer & Brancazio, 

2023). As our theoretical foundation, we here use autopoietic enactivism (From 

here, “enactivism” will be shorthand for autopoietic enactivism). On the enactive 

account, there is no separation between perception, action, and cognition. Only as 

scientific heuristics do we separate these processes.  

On traditional cognitivist models (which are often inspired by or integrated 

with the romance of math), cognition is understood as an input-computation-output 

https://paperpile.com/c/2Q3D5C/JJzP+QVGL+aLpT
https://paperpile.com/c/2Q3D5C/JJzP+QVGL+aLpT
https://paperpile.com/c/2Q3D5C/g3XA
https://paperpile.com/c/2Q3D5C/rS4l
https://paperpile.com/c/2Q3D5C/rS4l
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process (Cummins, 1996; Ramsey, 2007; Stokes, 2021; Wilson, 2002). On such a 

view, “the mind” turns sensory input into mental representations with content that 

is intentionally directed at the world. Such representations are then manipulated 

before “the mind” produces an output signal (This is overarchingly still true even 

for newer models such as predictive processing despite their claims of being anti-

cognitivist (Parr et al., 2022). Most varieties of enactivism are decidedly anti-

computational and anti-representational. Enactivism strongly rejects, mental 

representations, computation, and the input-output model of the mind. In 

extension, many enactivists and embodied cognition researchers also reject the 

romance of math (Abrahamson & Sánchez-García, 2016). 

Enactivism grounds all cognition in the ongoing activity of the physical 

body. In simplified sales pitch form, to “think” is to move. Activity in the world 

does not come with some antecedent mental processing because the movements 

just is the processing. For example, on the enactive account, gesturing wildly to 

explain a story or a math technique is not the expression of some antecedent 

cognitive state. Rather, when doing math (or anything else for that matter) the 

gesturing, words, direction of attention, volume of speech, posture, hormonal flow, 

neuronal firing, and sensorimotor processes all together constitute cognition (Di 

Paolo et al., 2017, 2018; Gallagher, 2017, 2020). 

https://paperpile.com/c/2Q3D5C/jEZE+gYIz+PYsb+jFKt
https://paperpile.com/c/2Q3D5C/yXM0
https://paperpile.com/c/2Q3D5C/ewI7
https://paperpile.com/c/2Q3D5C/biit+KdvV+V9oT+SJHU
https://paperpile.com/c/2Q3D5C/biit+KdvV+V9oT+SJHU
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Perception and cognition co-occur in ongoing action-perception-affordance 

feedback loops. That is, we act on affordances in the world, which brings about 

experience and, in turn, more action (Varela et al. 1991). Rather than building a 

model of the world, on the enactive approach, cognizers and their environments in 

joint interactive coupling bring forth their world (Di Paolo, 2023; Varela et al., 

1991). While we here stay somewhat agnostic to the strong ontological 

commitments behind this claim, the more important point is that cognition is 

always coupled and interactive between agents and environments (Di Paolo et al., 

2017). Paraphrasing Malafouris, rather than asking “what” is an agent it is more 

fruitful to ask “when” is an agent (Malafouris, 2013). The upshot here is that 

cognition is a relational and distributed process. Cognition is coupled activity 

between brain-body-world as a joint system. 

Notice the opposite nature of enactivism from the “Romance of Math.” 

While the platonic romance of math thinks of mathematical objects as existing 

eternally and context-free, enactivism posits math as a series of actions that unfold 

in interaction with the environment. Math is a series of actions that necessarily and 

constitutively require physical, cultural, and social, environments. So, on this view, 

math is not something that exists independently in nature that is then discovered. 

Math, just like rock climbing, is an activity co-constituted by agents and 

environments. Doing multiplication on the abacus is a collection of sensorimotor 

https://paperpile.com/c/2Q3D5C/Q6z0+rpZc
https://paperpile.com/c/2Q3D5C/Q6z0+rpZc
https://paperpile.com/c/2Q3D5C/V9oT
https://paperpile.com/c/2Q3D5C/V9oT
https://paperpile.com/c/2Q3D5C/PPzk
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skills, enculturation, and material conditions (namely, the presence of an abacus on 

a table in a context that demands math-ing). An enactive approach to math does not 

need to posit ontologically eternal unchanging mathematical forms, since math is 

equivalent to the practices of math. In other words, math is a set of social-cultural 

practices used to describe nature without necessarily “being” nature.     

Math is a matter of embodied action facilitated by a rich nexus of social-

cultural and material affordances. Math and math learning, is not something that an 

agent produces “within” and then asserts onto inert matter (for example, paper or a 

whiteboard). Math is an activity that dynamically takes place in a system between 

human agents, materials, and facilitating social-cultural background institutions 

(Gallagher, 2020; Malafouris, 2013, 2019; Menary, 2015). No materials, no 

institutions, and no enculturated agents to facilitate the learning - then no math. 

Math symbols, math environments, and math learning situations all contain nested 

cultural affordances. Many people can perform rapid addition or multiplication on 

the abacus without necessarily being “good at math in the head.” Using the abacus 

is primarily an affordance-based sensorimotor skill in which the agent and the 

abacus become a joint system for mathematical deduction (we will return to “math 

in the head” shortly).     

Sensorimotor Habit 

https://paperpile.com/c/2Q3D5C/oxJq+KdvV+4nYc+PPzk


Hernandez and Kronsted  Integrating Rock Climbing into the Mathematics Curriculum 

30 
 

From the enactive perspective, cognitive activity is carved out in terms of 

habit and skill. In pace with Ryle (Ryle, 1976), enactivism thinks of cognition, 

even traditionally “off-line” and “higher-order” cognition such as math, as a matter 

of skillful affordance-based habit (Di Paolo et al., 2018; Gallagher, 2020; Maiese, 

2022). However, unlike Ryle, who originally conceptualized habits as root and 

automatic, the enactive project (mostly) follows John Dewey in conceptualizing 

habits as flexible, contextual, and plastically open to revision (Dewey, 1922). 

Habits then are cascading sensorimotor schemes of affordance engagement with 

the environment aimed at staying in optimal attunement with that environment 

across material, social, cultural, metabolic, and other conditions (van Dijk & 

Rietveld, 2017). As agents physically act on affordances in their environments, 

they slowly fine-tune their sensorimotor schemes to the demands of these various 

contexts across timescales and conditions (Di Paolo et al., 2018): 

In the context of rock climbing, the optimality of the climb is not a static 

property of the environment to be picked up and processed (even if the 

environment itself is unchanging); the decision about what the most optimal 

move is, is made in action. The suggestion is that the optimal way of 

climbing is not a piece of information dependent on representing or 

calculating the parameters of the wall and bodily factors. The decision-

making process, including planning, re-planning of the route, and visualizing 

https://paperpile.com/c/2Q3D5C/NrVJ
https://paperpile.com/c/2Q3D5C/jPFJ+KdvV+SJHU
https://paperpile.com/c/2Q3D5C/jPFJ+KdvV+SJHU
https://paperpile.com/c/2Q3D5C/mFxf
https://paperpile.com/c/2Q3D5C/JJzP
https://paperpile.com/c/2Q3D5C/JJzP
https://paperpile.com/c/2Q3D5C/SJHU


The Philosophy of Mathematics Education Journal No. 42 (2024) 

31 
 

oneself on the route, is a dynamic activity, relating to the ongoing interaction 

of the agent with his/her environment (Rucińska, 2021, p. 5249) 

Both in the case of math and rock climbing there are optimal and less optimal 

courses of action dictated by the context. Being “good” at math or “good” at 

climbing means having developed habitual modes of engagement with affordances 

in those contexts in which the agent is dispositionally ready to act correctly within 

that context. The rock climber can switch their center of gravity, weight, and holds 

so as to minimize the strain on the body as they ascend. The mathematician can 

move hand and pen in patterns that produce valid patterns of inference in 

accordance with culturally transmitted mathematical rules. Our constant 

attunement of sensorimotor activity is always normatively determined by 

contextual affordances.     

The complex contextual behaviors required to operate the social world 

smoothly come in hierarchically organized and dynamically constraining and 

enabling “bundles of habits” (Maiese, 2022). On a more fine-grained level of 

detail, each habit consists of mutually constraining and enabling “sensorimotor 

schemes” (Di Paolo et al., 2018). Rather than mental representations that produce a 

motor command, we can heuristically think of agential behavior as adaptive 

behavioral loops of sensing affordances and acting. Rudimentary sensorimotor 

https://paperpile.com/c/2Q3D5C/KHnm/?locator=5249
https://paperpile.com/c/2Q3D5C/jPFJ
https://paperpile.com/c/2Q3D5C/SJHU
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schemes, such as reaching, grabbing, and walking that are learned in early infancy 

slowly stack and scale to develop more advanced sensorimotor schemes 

(Delafield-Butt & Trevarthen, 2015; Kelso, 2016; Thelen & Smith, 1994). Even 

folk-psychological concepts such as intentions and “mindreading” begin with the 

repetition and adaption of sensorimotor processes often facilitated by the narration 

of caretakers (Hutto, 2008). Our sensorimotor schemes change and update to stay 

adaptive to cultural, social, material, and embodied demands. Schemes, therefore, 

exist in dynamically integrated bundles of behavior that can perturb, activate, 

reduce, increase, and combine each other in self-organizing dynamically flexible 

patterns (Di Paolo et al., 2017, 2018).   

Mathematical Cognition is Still Sensorimotor Coordination 

While it is perhaps easy to think of classically sensorimotor tasks such as “sports” 

being non-representational, online, and non-computational, it is harder to see in the 

case of traditionally “abstract” and off-line cognition such as math. However, 

enactivist “holds the line” by arguing that even “thinking in your head” and 

abstract symbol manipulation is still a matter of embodied habitual skill acting on 

affordances. For one, doing the vast majority of complex mathematics involves 

using the body to create symbols (on a board, on paper, on a screen, etc.). Such 

symbols are then manipulated in a law-like step-by-step fashion, which involves 

https://paperpile.com/c/2Q3D5C/wxSx+KRjs+ZaZq
https://paperpile.com/c/2Q3D5C/l8VF
https://paperpile.com/c/2Q3D5C/SJHU+V9oT


The Philosophy of Mathematics Education Journal No. 42 (2024) 

33 
 

physically moving the body to re-arrange the symbols in accordance with what the 

symbols afford. Knowing how to solve math equations is the body doing specific 

actions when coupled with nested affordances. In other words, abstract knowledge, 

such as the quadratic formula, is a disposition to skillfully apply a set of 

sensorimotor operations when in contact with the right affordances. Knowing 

“quadratic equations” means doing the steps of symbol manipulation procedures. 

As an example, let’s examine the introductory summary of the quadratic formula 

on the popular internet math-self-help website Khan Academy:  

The quadratic formula helps us solve any quadratic equation. First, we bring 

the equation to the form ax²+bx+c=0, where a, b, and c are coefficients. 

Then, we plug these coefficients in the formula: (-b±√(b²-4ac))/(2a) 

(Khanacademy.org, retrieved 01/19/2024) 

Notice the immediate move from a concept into a summarized explanation of the 

concept in terms of step-by-step actions. The enactivist point is that even when we 

are manipulating complex conceptual thoughts “in our heads” we are doing 

sensorimotor actions in engagement with worldly affordances, and the whole body 

is involved in the production and manipulation of those affordances (Gallagher, 

2017). To think deeply about utilitarianism vs. deontology, “in the head” is for 

one’s neurons, hormones, hands, and so on to plastically reorganize their action 

https://paperpile.com/c/2Q3D5C/biit
https://paperpile.com/c/2Q3D5C/biit
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dispositions so that the agent will act differently in future interactions with relevant 

ethical situations with ethical affordances. In this case, for example, to act in 

accordance with the categorical imperative rather than out of utility concerns the 

next time one is in a morally complex situation. As Rucsinka, ‘a la’ Ryle, argues 

explicitly about rock climbing: 

First, there are no two parallel activities (cognitive and not-cognitive) 

occurring during an intelligent, embodied act. Second, there is no second 

mental process causing the intelligent act. In this way, the concept of 

heeding applied to rock climbing serves as an alternative to the ideas that 

rock climbing involves two distinct activities (cognitive planning of the 

climb and mindless execution of the climb, ala Dreyfus), or that mindful 

rock climbing must involve a special second process in a cognitive 

architecture where planning really occurs (ala Evans and Stanovich). 

Heeding can help us think of rock climbing as one mindful activity, where 

planning (including route reading and visualizing) are themselves qualities 

of that activity (Rucińska, 2021, p. 5296).  

This way of reconceptualizing higher-order thinking as the rearranging of 

affordance-based dispositions for embodied action aligns with the empirical 

literature on neuroscience. For example, across much of neuroscience, rather than 

https://paperpile.com/c/2Q3D5C/KHnm/?locator=5296
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looking at brains as modular, the brain has now been demonstrated to be an organ 

that constantly plastically rewires its own self-organizing circuits (Anderson, 

2014). In fact, the recursive, dynamic, self-organizing, and plastically updating 

cascading activation loops between body and brain demonstrate that the brain is 

better conceptualized as an organ that resonates between world and body 

(Damasio, 1994; Fuchs, 2018; Kelso, 1995; Raja & Anderson, 2019). As Hutto and 

Myin forcefully point out, we have no scientifically respectable account of how 

information in the environment is supposed to become meaningful, contentful 

mental representations (Hutto & Myin, 2013, 2017). However, what we do have is 

convincing growing evidence of recursive dynamic interactions of synchrony and 

resonance between brain-body-world as a coupled system (Raja & Anderson, 

2021; Tognoli et al., 2020). Even predictive processing accounts of the brain and 

behavior now use a dynamic and world mediated account of cognition (Friston, 

2010; Parr et al., 2022; Ramstead et al., 2020). The point of this detour through 

neuroscience is again to demonstrate that it is perfectly coherent to think of higher-

order cognition as embodied, enactive, and skill-based —even in cases such as 

planning or doing math “in the head.” Furthermore, as we shall see in the next 

section, doing math “in the head” is often also a matter of doing an embodied 

simulation — a kind of embodied activity just short of overtly performing the 

action. 

https://paperpile.com/c/2Q3D5C/PQtw
https://paperpile.com/c/2Q3D5C/PQtw
https://paperpile.com/c/2Q3D5C/BVoJ+3PUS+zCz2+OYzG
https://paperpile.com/c/2Q3D5C/b8VE+W25B
https://paperpile.com/c/2Q3D5C/Spmo+YEui
https://paperpile.com/c/2Q3D5C/Spmo+YEui
https://paperpile.com/c/2Q3D5C/l4f6+O1zA+yXM0
https://paperpile.com/c/2Q3D5C/l4f6+O1zA+yXM0
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As we saw in previous sections, both in the case of rock climbing and math 

problem-solving, practitioners must plan and “back-off” to reassess. Both math and 

climbing significantly depend on higher-order planning for the engagement with 

future affordances. Next we look more explicitly at the role of planning and 

backing-off in math and in rock climbing to justify their potential integration into a 

future math curriculum.  

Overlap Between Climbing Problems and Mathematics Problems   

In our investigation of rock climbing problem-solving and math problem-solving, 

we have found that both activities involve planning and “backing off.” Seen 

through the lens of embodied cognitive science, the underlying cognitive 

mechanism is in both cases the same; acting on nested affordances to produce a 

plan (the re-orienting of one’s bodily action dispositions) and periodic pausing to 

assess the current situation against the plan. With each assessment pause, the plan 

is updated, and the loop continues — planning-execution-assessment to planning-

execution-assessment. Learning how to reorganize attentional patterns and getting 

better at embodied simulation while under various physical and cultural constraints 

can (with or without explicit instruction from an educator) be used in the 

mathematical context. As has been shown with other activities such as dance and 

theater embodied activities that involve various degrees of attention training, 

embodied critical thinking, empathy, and simulation improves critical thinking 
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skills in students even without explicit instruction from an educator (Becker, 2023; 

Giguere, 2006, 2011; Lee et al., 2020).  

So far many of the cognitive processes we have covered take place in daily 

skillful action but in a mostly sub-personal or unreflective fashion. However, both 

in the case of mathematics and rock climbing attention shifting and embodied 

simulation for the sake of planning is voluntary and overt. Both math and rock 

climbing forces the agent to make reflective and voluntary cognitive processes that 

we in daily life typically rely on “under the radar.” In the case of math and rock 

climbing, the planning and attentional shifts have to be overt and intentionally 

directed. 

While neither endevour is particularly asocial, it is ultimately up to the 

individual to leverage their skills, abilities, and mental fortitude to solve the 

problem. Further, both endeavors do involve a relatively static environment. The 

static environment of the rock climbing gym enables the climber to take more 

initiative in their environment. Similarly, the affordances of a math equation will 

not begin to change until the agent acts on the problem. In contrast, we can think of 

something like surfing. In surfing, there are many environmental elements that are 

out of the control of the agent. One can paddle out to the surf break with an idea of 

how they want to perform, but at the end of the day a rogue wave will switch the 

agency to being outside the agent’s control. Similarly in tennis, the agent has to 

https://paperpile.com/c/2Q3D5C/m9Ja+cfcu+jBW7+0qpk
https://paperpile.com/c/2Q3D5C/m9Ja+cfcu+jBW7+0qpk
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constantly respond/react to their opponent or teammate, once again displacing 

much of the agency to outside the agent. In rock climbing most of the agency 

within the organism-environment system is skewed towards the initiative of the 

agent. In contrast in activities such as surfing or tennis the agency of agent-

envrionment coupling lies more skewed towards the environment. Rock climbing 

and math both have rigid activity structures in which the locus of agency for the 

agent-environment system lies mostly with the agent. 

  Both math and rock climbing involve very rigid prescribed boundaries for 

doing a task. In indoor rock climbing, there are specific starting holds and finishing 

holds where the agent is only allowed to use a prescribed color up the entire route. 

However, there is space of adaptation and creativity, but this is dependent on the 

skill level of the agent. For instance, a skilled climber can use different sequences 

of moves, body position tactics, and rest strategies to optimize their ascent. 

Similarly in math, the agent often begins a task with a very specific set of 

parameters, like equations, formulas, or starting values, and with a very clear end 

goal. There is also space for creativity, yet this is contingent on the skill level of 

the agent solving the problem. A skilled agent might discover a more creative or 

efficient way to solve the problem, prove the same concept using a different 

approach, or even invent new techniques to solve the problem efficiently. Indeed, 

both math and rock climbing require a balance between following very specific 
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rules and procedures while also encouraging exploration and creative problem-

solving. 

 Rock climbing and math require learning to overtly and voluntarily reorient 

attention, and simulate movement for future execution. Bringing attention and 

simulation from the pre-reflective to the reflective are two of the reasons why rock 

climbing is a great candidate for math curriculum integration. The activity trains 

the agent to make explicit, voluntary, and intentional, attentional, and simulative 

strategies that are also used in the same way in mathematics. Put simply, rock 

climbing and mathematical problem-solving overarchingly use the same cognitive 

process. Training in one domain, therefore, improves capabilities in the other 

domain. 

Finally, we wish to address one classic objection often faced by researchers 

who look at niche activities; “what about this other activity X?” Whether 

researching dance, rock climbing, martial arts, or whichever subdomain, 

researchers are often asked, “what is so special about this activity?” We are not 

claiming that rock climbing is the only embodied activity that jives well with 

problem-solving. Neither are we claiming that rock climbing is the best activity to 

pair with mathematical problem-solving — chess is probably a more obvious and 

straightforward candidate, but that is exactly beside the point. Other activities 

similarly utilize embodied simulation, and attention shifting for cognitive planning, 
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and that’s fine. Rock climbing does not have to be unique to be effective. We are 

claiming that given the particular nature of rock climbing, the activity does lend 

itself well to incorporation with mathematics curricula. While other activities, for 

example, playing chess, might also lend itself easily to overlap with math, so does 

rock climbing. However unlike chess, rock climbing is arguably more fun, 

engaging, and cooler.  

Planning and Backing-Off as Shifts in Attention 

As we have seen both in math and in climbing, expertise involves being open to 

new possibilities while staying within the constraints of the problem; skillful math 

and skillful climbing involve “seeing” paths for solutions by shifting one’s 

attention to different aspects of the problem (Mason, 2023; Rucińska, 2021). When 

climbers are afraid on the wall, it is common to over grip and over-attend to one 

specific thing, whether it be a hold or a specific path. Similarly, in math, students 

often become overly attached to a certain solution path, sending them down a ‘wild 

goose chase’ (Schoenfeld, 2013) as they cling on to their solution. In both 

domains, mastery involves skillfully shifting attention in context-appropriate 

patterns to follow new lines of affordances. 

 Whether climbing on the wall or grinding through difficult equations, when 

following affordances, the revealing of new affordances often leads to shifts in the 

agent's attention (Mason 2023; Abrahamson and Bakker 2016; Abdu et al. 2023). 

https://paperpile.com/c/2Q3D5C/KHnm+DcIB
https://paperpile.com/c/2Q3D5C/rsCT
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When being still on the wall and evaluating their current position and situation, 

climbers also reconfigure their attention, which lets them pursuit new lines of 

affordances. When backing off to reconsider a math problem, pondering the 

problem for new insight often leads to subtle changes in attention that reveal a new 

path through the problem — that is, new affordances (Mason 2023). Both 

mathematicians and climbers periodically need to reassess the situation to find new 

paths through their tasks by shifting their attention to perceive new affordances. 

 In fact, empirical evidence strongly suggests that students develop new 

sensorimotor schemes and attentional schemes when they learn new mathematical 

problem-solving techniques. That is, across activity domains, it is shown that 

mathematical learning involves movement and shifts in attention. For example, 

across several studies Abrahamson and colleagues use eye tracking to demonstrate 

that students can learn the concept of “ratio” through hand eye coordination in 

video games (Abdu et al., 2023; Abrahamson & Sánchez-García, 2016; Howison et 

al., 2011). Without any instruction these students use sensorimotor coordination 

and shifts in attention to solve problems that involve understanding, and holding 

ratios. Similarly, semester long studies, in which math students undertake dance 

training, or are allowed to move freely around the classroom demonstrate that 

students use sensorimotor skills, perspective, and attention change to learn math 

concepts and solve problems (Leandro et al., 2018; Stern & Bachman, 2021). In 

https://paperpile.com/c/2Q3D5C/ewI7+yvIK+7u7W
https://paperpile.com/c/2Q3D5C/ewI7+yvIK+7u7W
https://paperpile.com/c/2Q3D5C/jBXA+GfsD
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addition, being able to manipulate physical or digital objects in 3D to change 

perspective and attention improves mathematical learning (Landy & Goldstone, 

2007; Landy & Linkenauger, 2010). In the same vein the use of augmented reality 

devices have been shown to be effective in mathematics education across multiple 

studies because AR helps students redirect their attention to relevant features of the 

problem environment (Ahmad & Junaini, 2020). In the arts music, dance and 

drama have all been shown to improve mathematical learning (Alam & Mohanty, 

2023; Becker, 2023; Kisida & LaPorte, 2021; Lee et al., 2020; Winner et al., 

2020).  

Across the above cases we see math learning and concept formation take 

place through the development of sensorimotor schemes and attention schemes — 

being able to switch between movement patterns and attention patterns are core 

components of mathematical competence. With its emphasis on backing-off for 

attentional reassessment, rock-climbing deliberately trains the agent’s ability to 

shift attention and integrate the attention shift into sensorimotor activity.   

With shifts in attention, new affordances move into salience, potentially 

activating various combinations of trained sensorimotor scheme clusters. Whether 

the sensorimotor schemes in question are “knowing” specific math techniques such 

as factoring, or how to leverage a foothold, shifts in attention let the agent ready 

themselves for executing that sensorimotor technique. As the technique is 

https://paperpile.com/c/2Q3D5C/BfdT+HASF
https://paperpile.com/c/2Q3D5C/BfdT+HASF
https://paperpile.com/c/2Q3D5C/Uk62
https://paperpile.com/c/2Q3D5C/rIoo+bcP2+0qpk+VGkc+m9Ja
https://paperpile.com/c/2Q3D5C/rIoo+bcP2+0qpk+VGkc+m9Ja
https://paperpile.com/c/2Q3D5C/rIoo+bcP2+0qpk+VGkc+m9Ja
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executed, new affordances emerge; new potential holds or new potential 

mathematical “moves,” which leads to further execution of sensorimotor schemes, 

new shifts in attention, and possibly updating the plan. Note that this does not 

mean that the affordances exist independently of the agent and are somehow 

hidden and platonic. Rather the agent generates new affordances in their action, 

attending, planning loop. In this way, attention, planning, movement, and 

assessment become a virtuous cycle for problem-solving in climbing and math.  

Planning and Backing-Off as Simulation  

Both in the case of math problem-solving and rock climbing planning involves 

running an enactive simulation of solving the problem. Here the simulation is 

neither cognitively distinct from the act of actually solving the problem or relying 

on representations. Rather, when in front of the problem, whether math or rock, the 

nested affordances available allow the agent to actively use their whole body 

(including vision, hearing, gesture, posture, etc.), to explore the route forward by 

preparing the body through simulation — doing the actions just short of actually 

doing the actions so that the body is ready: 

 

Even though climbers spend 63% of the time in stationary positions during 

the climb, and 37% of the time ascending (Billat et al. 1995), being 

stationary does not mean being still. During stationary positions climbers 
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engaged in exploratory actions that supported their climbing performance. 

Being stationary also involves action. In exploratory movements, the climber 

“(co-)constructs information through her/his actions”, since the perceived 

patterns of stimulation are contingent on his/her motion (Seifert et al. 2018, 

p. 2). The key idea is that exploratory action, an equivalent of a “dry run”, is 

executed by the agent in the world, not in some mental sphere. This provides 

a good basis to understand how further re-planning of the climb is achieved 

in the action. Engaging in exploratory action is a way of responding to and 

acting on the affordances of the wall. Such exploration, even if only visual, 

is an act that makes a practical difference as, for instance, it regulates the 

climber’s posture (Rucińska, 2021, p. 5300) 

 

Calibrating the body before engaging or recalibrating in the midst of problem-

solving is not removing oneself from the process or “going back inside the head.” 

Rather, in both math and climbing, the agent is actively exploring affordances in 

the environment that they can use to recalibrate the body’s dispositions for the next 

burst of overt movement (Brancazio & Segundo-Ortin, 2020). This is consistent 

with research on mental simulation, which demonstrates that simulation is highly 

multimodal and activates bodily readiness short of doing the action (Gallese, 2020; 

Gallese & Guerra, 2019; Ilundáin-Agurruza, 2017). Planning and backing-off are 

embodied, enactive, and part and parcel of the problem-solving. Whether readying 

https://paperpile.com/c/2Q3D5C/KHnm/?locator=5300
https://paperpile.com/c/2Q3D5C/V6P0
https://paperpile.com/c/2Q3D5C/SlNn+BWMQ+rSct
https://paperpile.com/c/2Q3D5C/SlNn+BWMQ+rSct
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oneself for specific holds and configurations on the wall or using specific 

mathematical rules and techniques, active self-priming keeps the agent on task 

toward a solution.  

The higher-order cognition involved in math and climbing requires an 

ongoing assessment and incorporation of the agent’s bodily resources into the plan 

for further continuation. Good climbers always aim for efficiency — that is, good 

climbers always take the most energy-efficient route. A similar approach exists 

within mathematics; an “elegant proof” is the route through a proof with the fewest 

least complicated steps. To achieve the aim of efficiency is pragmatically also to 

deploy one’s attentional resources optimally. Pragmatically both the mathematician 

and the rock climbers must preserve their attentional resources. Both activities 

require the use of the agent’s limited attentional resources (simply think back to 

those long nights trying to finish math homework and reaching math exhaustion 

while parents keep fussing). Thus, implicit within mastery of these activities is an 

assessment of the agent’s own attentional resources. Pursuing a specific type of 

route up the wall or route through the proof might be cognitively and physically 

demanding. As with the mastery of many other activities (Montero, 2016; Toner et 

al., 2021), the climber and the mathematician both must continuously monitor the 

body in execution while simultaneously executing sensorimotor engagement with 

the environment. For example, “do I have the energy to solve that one hold using a 

https://paperpile.com/c/2Q3D5C/q6s4+nLxJ
https://paperpile.com/c/2Q3D5C/q6s4+nLxJ
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one-arm hang?” Or “if I factor this equation will the new equation be more 

confusing?” As climbers or mathematicians “backs-off” to assess their next move, 

they must both incorporate the current state of the body into their cognitive 

planning.      

Here, we need a cautionary note about the direction of causality. In this 

paper we are mainly focused on the reasons why rock climbing can improve 

mathematical ability. We hope that educators will use this article as a starting point 

to integrate rock climbing into their math curricula. However, technically the 

argument is laid out so that the arrow of direction runs both ways — in theory 

math training could also make you a better rock climber. Again, the two domains 

use the same cognitive mechanisms. However, the physical demands of each 

activity does create important restraints that we must acknowledge. Rock climbing 

is extremely physically demanding. Typical mathematics is not physically 

demanding. Because of this asymmetry in task demands we cannot mathematize 

ourselves into great rock climbers.    

Using Climbing and Other Physical Problem-Solving Activities to Teach Math 

— a Preliminary Guide to Educators  

One of the overarching goals of this paper is to demonstrate the potential of rock 

climbing to be integrated into mathematics curricula. We have seen that both math 
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and rock climbing utilize enactive planning, simulation, and reassessment. Both 

activities are ultimately based on affordance-based activity. The activity of math 

and rock climbing both move processes that are often sub-personal or pre-

reflective into explicit, voluntary, reflective execution. Both activities train the 

agent into using attention and embodied simulation in a voluntary fashion to solve 

problems under physical and cultural the constraints. For educators, this means that 

several math techniques can be taught and improved through rock climbing. The 

role of the educator is to make the student realize the connection between the skills 

they are using in rock climbing and that they are using in mathematics. For 

example,  

Remember when you were on the wall and you were at the crux? What do 

you do when you are cruxing out on a problem? Remember how you took a 

deep breath, backed off, and looked around to figure out your next move? 

Think about that feeling of being on the wall and figuring out your beta. Try 

to use that same way of thinking when you are looking at the equation. 

Where can you go next?  

Again, one of the many reasons we focus on rock climbing is that the activity 

requires explicitly using attention, simulation, and sensorimotor skills as a form of 

planning. It is the overt use of these cognitive processes that aligns rock climbing 
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so well with math education. Depending on their approach of choice, the instructor 

can choose to point out this overt overlap. For example the instructor can integrate 

language from climbing in the classroom. Another subtly strategy is to use 

climbing language during instruction but make students realize the overlap in 

technique themselves as they work through problems. 

A professor can develop classes that meet three times a week, in which one 

of those weekly meetings is at a climbing wall (many universities have indoor 

climbing walls for free.) Another approach is for educators to teach every session 

at a climbing facility in which conventional whiteboard mathematics is taught 

before and after climbs (use whiteboards on wheels to bring the board close to the 

actual wall). Another approach is to solve math problems between each climb.   

For an even more involved curriculum educators can design math problems 

that are solved by performing certain activities on the wall. For example, students 

can pair up and go bouldering at a local climbing gym. They will have a checklist 

of different problem-solving strategies with them. As their partner attempts 

different routes, they can check off problem-solving strategies on the list as they 

see the different strategies on the wall from their partner (i.e, trying a different 

approach when one doesn’t work; planning the problem out before getting on it). 

After both the climbers have had an opportunity to climb as well as watch their 
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partners and use the check list, the students will engage in several math problems, 

using their check list to guide them through challenging problems. The goal here is 

to integrate explicitly embodied learning with mathematical problem-solving, 

leveraging the hands-on engagement of rock climbing to deepen students' 

understanding of problem-solving strategies and their application in mathematical 

contexts. While in this article we have focused on the theoretical concerns 

regarding math and rock climbing one of the authors of this article will later 

release a full curriculum for college mathematics with rock climbing.  
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